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Side Effects of Mild Hypothermia
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Summary: Mild hypothermia is increasingly touted as a low risk clinical mea-
sure in brain protection. This article reviews potential adverse effects of mild
hypothermia by organ system and suggests a risk assessment framework for
clinical decision making. Key Words: Brain protection—Hypothermia—

Complications.

Mild hypothermia (33°-35°C) has been shown to
be protective in the laboratory settings of incom-
plete global ischemia and focal cerebral ischemia.
Three human studies suggest that prolonged extra-
operative mild hypothermia is associated with bet-
ter neurologic outcome after head injury (1-3). Mild
hypothermia has been proposed for clinical use as
an adjunct for achieving protection from cerebral
ischemia (4,5). Mild intraoperative hypothermia is
currently used for brain protection during aneurysm
clipping at several major centers.

The following discussion reviews complications
of hypothermic therapy and relates their risk to the
potential benefits of mild hypothermia. Induction
and maintenance of mild hypothermia are occasion-
ally associated with unintentional further tempera-
ture reduction. Accordingly, literature dealing with
temperature reduction to 30°C is reviewed.

* Article from the Symposium on the use of Hypothermia in
Intensive and Critical Care, held at the New General Hospital of
Vienna, September 2-3, 1994. »
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CIRCULATORY EFFECTS

The circulatory effects of hypothermia include in-
creased peripheral vascular resistance and cardiac
afterload (6,7). As cooling proceeds, fluid leaves the
vascular space, resulting in mild increases in hemat-
ocrit and blood viscosity (8). Hemoconcentration
and low microcirculatory flow contribute to the
known increase in blood viscosity of 4%—6% for
each 1°C in temperature reduction (8). Cold-
induced diuresis caused by suppression of antidi-
uretic hormone (ADH) and shunting of peripheral
blood volume centrally leads to further depletion of
intravascular volume. The hypothermic patient may
therefore be at greater risk for hypovolemia when
compared to a normothermic individual, particu-
larly once rewarming is started.

CARDIAC EFFECTS

Hypothermia may be associated with myocardial
ischemia. The Perioperative Ischemia Randomized
Anesthesia Trial (PIRAT) (9) study group reported
a significantly higher (36% vs. 13%) incidence of
postoperative myocardial ischemia diagnosed by
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electrocardiogram (ECG) in vascular surgery pa-
tients who arrived in the intensive care unit (ICU)
with temperatures <35°C, when compared to those
who arrived normothermic. Moreover, hypother-
mic patients had a higher rate of postoperative an-
gina (18% vs. 1.5%), despite similar preoperative
risk factors. Mild hypothermia can therefore be ex-
pected to predispose to coronary ischemia in sus-
ceptible patients.

Hypothermia of 34°-35°C markedly decreased
porcine left ventricular contractility (10) and neona-
tal cardiac output (by 39%) (11). Hypothermia also
impairs diastolic relaxation. Furthermore, the effi-
cacy of cardiovascular medications may be im-
paired during mild hypothermia. Dobutamine’s sal-
utary effect on contraction velocity of isolated per-
fused and spontaneously beating rabbit hearts was
substantially reduced at 32°C (12). In isolated per-
fused hearts, a mild inotropism has been demon-
strated with mild hypothermia, possibly related to
increased myofilament Ca®™ responsiveness (13).
However, it takes the heart longer to develop max-
imal strength of contraction and therefore may pre-
vent its conversion into useful work (10). During
mild hypothermia, the decrease in myocardial con-
tractility, the augmented negative inotropic effects
of volatile anesthetics (14), the lesser cardiac re-
sponsiveness to catecholamines (15), and the
slower metabolism of anesthetic agents may set the
stage for administration of a relative anesthetic
overdose by unwary practitioners.

Hypothermia and rewarming can elevate plasma
catecholamine levels with the potential attendant
problems of cardiac arrhythmias, hypertension, and
myocardial ischemia. Mild hypothermia generally is
not directly responsible for cardiac arrhythmias but
may cause conduction disturbances and ventricular
irritability by potentiating other drugs such as bu-
pivacaine (16) or by causing hypokalemia (17). At
temperatures below 32°C, there is a tendency to
develop atrial fibrillation (18). If mild hypothermia
is allowed to drift below 30°C, spontaneous ventric-
ular fibrillation may occur (6).

Mild hypothermia shifts potassium intracellularly
and predisposes to hypokalemia with related car-

diac complications in postsurgical patients (17). As

well, the toxicity of potassium administration ap-
pears to be potentiated by hypothermia. Sprung et
al. (19) observed that the rat cardiac toxicity of in-
travenously administered potassium progressively
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increased with falling temperature. At 31°C, toxic-
ity was 5% higher than at 37°C. Aggressive potas-
sium replacement during hypothermia can further-
more result in hyperkalemia on rewarming (20).

Nonuniform cooling or rewarming of the heart
may cause regional heterogeneity of conduction,
action potential duration, and refractory periods.
This in turn favors unidirectional conduction block
and reentrant dysrhythmias (21), seen with moder-
ate (22) and mild (23,24) hypothermia.

PULMONARY EFFECTS

Mild hypothermia may contribute to pulmonary
abnormalities in the postoperative period. Signs of
pulmonary edema have been described upon re-
warming from mild hypothermia in brain tumor pa-
tients (25) and after environmental exposure (26)
and have been attributed to a central mechanism.
Patients who arrived in the ICU with a temperature
<35°C after peripheral vascular surgery were more
likely to have marginal oxygenation (PaO, < 80 mm
Hg) than those who arrived with normal tempera-
ture (9). Recently, Bissonette and Sessler (27) re-
ported no adverse effects of core temperatures be-
tween 34°C and 36°C on the postanesthetic recovery
of children. While at first this report may appear
reassuring, it must be remembered that few would
consider 36°C mild hypothermia for brain protective
purposes. Furthermore, the patients studied by
these investigators underwent peripheral surgery
which lasted no longer than 3 h. This is substantially
different from the population of patients who might
most benefit from mild hypothermic intraoperative
management.

The increased metabolic demand after naloxone
reversal of opioid drugs has been associated with
myocardial ischemia and pulmonary edema. Just et
al. (28) demonstrated that mild hypothermia
(34.2°C) potentiates the increase in minute ventila-
tion and oxygen uptake (VO2), which occurs after
naloxone reversal. An increase in VO2 of 114% was
observed in hypothermic patients, compared to an
increase of only 25% in normothermic (36.8°C) pa-
tients.

NEUROLOGIC EFFECTS

The cerebral effects of hypothermia are well
known and will not be repeated here. Rather, this
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section emphasizes potential adverse effects. With
each degree of temperature reduction, cerebral
blood flow (CBF) and cerebral metabolic rate of
oxygen (CMRO,) decrease approximately 5% (29).
However, at 29°C, CBF distribution was inhomoge-
neous in monkeys and failed to return to baseline
(30). Steen et al. (31) further observed cardiovascu-
lar collapse with severe hypoxia and acidosis on
rewarming similarly cooled dogs. While these ef-
fects were observed at a substantially lower tem-
perature than what is meant by mild hypothermia,
they are still of concern since hypothermic over-
shoot can develop after induction of mild hypother-
mia, especially in patients with central nervous sys-
tem (CNS) injury (Clifton, personal communica-
tion, 1994).

In halothane-anesthetized rats, CBF autoregula-
tion during hypothermia to 30.5°C was either im-
paired or abolished, depending on CO, management
(32). Temperature also affects the reactivity of iso-
lated perfused cerebral arterioles. Progressive hy-
pothermia leads to calcium-dependent vasodilation
(33).

Rewarming after mild hypothermia may present
the greatest challenge to the CNS. Rebound in-
creases in intracranial pressure (ICP) and hyper-
thermic overshoot are of concern. While no ICP
rebound was recorded by Marion et al. (3), their
hypothermic patient group did require more thera-
peutic interventions to control ICP than their nor-
mothermic controls. Baker et al. (34) found, how-
ever, that patients treated with mild intraoperative
hypothermia had higher late postoperative temper-
atures than normothermically treated controls. The
significance of this finding is unclear but of concern,
given the known deleterious sequelae of hyperther-
mia to tissue recovering from ischemia (35).

COAGULATION SYSTEM EFFECTS

Hypothermia-induced coagulation abnormalities
include reversible platelet sequestration and dys-
function, enhanced fibrinolytic activity, and slow-
ing of enzymatic activity required for clotting (36).

Temperature affects prothrombin time (PT),
thrombin time (TT), and partial thromboplastin time
(PTT) (37). At 34°C, PT and PTT increased by 9%
compared to 37°C (38). It should be noted, how-
ever, that clinical laboratories routinely perform
clotting tests at 37°C. Assessment of clotting factor

levels by measuring PT and PTT at 37°C does not
adequately describe the hypothermic coagulation
defect. This is because hypothermia interferes with
the enzymatic steps in the clotting cascade, inde-
pendent of clotting factor level (38,39).

Platelet function appears to be adversely affected
by mild hypothermia. Surface cooling to 32°C can
produce reversible platelet dysfunction (40). In hy-
pothermic (30°C) pigs, Oung et al. (41) found that
bleeding time was nearly doubled. In neonatal cold
injury, however, rewarming deaths are attributed to
hyperaggregation of platelets and resultant massive
hemorrhage (42). Thrombocytopenia has only
rarely been reported in environment-induced mild
hypothermia (43). Mild to moderate hypothermia
has been implicated in exacerbating perioperative
coagulopathy, particularly in severe injury (44).
Eighty percent of nonsurviving trauma patients
were hypothermic compared to 36% of survivors
(45). Nonsurvivors were more severely hypother-
mic (31.0 = 1.0°C vs. 34.0 = 0.5°C) and developed
clinically significant bleeding despite adequate
blood component replacement when compared to
survivors. While 31°C would not normally be at-
tained during mild hypothermic techniques for brain
protection, unanticipated major blood loss, after-
drop effects, and equipment malfunction might well
combine to precipitate this complication. During
exploratory laparotomy in trauma patients, blood
loss was significantly larger in patients with temper-
atures of 33°-35°C, independent of the severity of
injury, when compared to patients whose tempera-
tures were maintained above 35°C (46). Studies re-
lating temperature to surgical blood loss are difficult
to interpret, however, since the massive transfusion
itself can be a factor in the development or exacer-
bation of hypothermia (47).

The integrity of the coagulation system is partic-
ularly important during and after intracranial sur-
gery, as hemostatic control can be somewhat tenu-
ous. Coagulopathy predisposes to intracranial
bleeding (48) and postoperative intracranial hemor-
rhage is associated with poor outcome and severely
prolonged hospital stay (49).

METABOLIC EFFECTS

Decreasing body temperature lowers metabolic
rate by approximately 5%~7% per °C (6,7). Hypo-
thermia also shifts the hemoglobin—oxygen dissoci-

Journal of Neurosurgical Anesthesiology, Vol. 7, No. 2, 1995



142 A. SCHUBERT

ation curve to the left, thus reducing tissue oxygen
availability. This may contribute to an uncompen-
sated metabolic acidosis (17), which is commonly
observed with hypothermia. A lower metabolic rate
is associated with decreased CO, production, which
promotes a respiratory alkalosis when minute ven-
tilation is unchanged, as often occurs in the opera-
tive setting.

Metabolism of anesthetics and muscle relaxants
(50) is slowed during mild intraoperative hypother-
mia. Hypothermia of 34°C during recovery from in-
complete spinal cord injury was associated with
toxic plasma levels of phenytoin, suggesting that
mild hypothermia affects the metabolism of this
drug sufficiently to warrant clinical concern (51).
Citrate metabolism decreases 30%-40% between
37° and 30°C (52). Mild hypothermia may therefore
hasten the development of citrate toxicity during
transfusion. Mild intraoperative hypothermia also
appears to compound the tendency for protein
breakdown and nitrogen loss after major orthopedic
(53) and abdominal (54) surgery.

IMMUNOLOGIC/HORMONAL EFFECTS

Leukocyte mobility and phagocytosis are mod-
estly impaired during mild hypothermia (55). Re-
versible pancytopenia has been described in asso-
ciation with moderate hypothermia of 31.1°C (56).
Mild hypothermia under halothane anesthesia led to
increased bacterial counts and a larger area of in-
duration after a standard bacterial dermal inoculum
(57). Immunologic depression combined with de-
creased cutaneous blood flow during mild hypother-
mia (58) and surgical manipulations may therefore
increase the risk of wound infection. Immune sup-
pression associated with hypothermia may thus ac-
count for the trend toward higher sepsis and pneu-
monia rates in recent trials employing mild hypo-
thermia for closed head injury.

In the awake state, mild hypothermia induces a
number of hormonal changes, such as an increase in
plasma corticosterone and thyroid-stimulating hor-
mone (TSH), a decrease in plasma prolactin, and a
decrease in hypothalamic thyrotropin-releasing hor-
mone (TRH). It is suggested that mild hypothermia
causes prolactin release through a central dopami-
nergic mechanism and that the increased TSH lev-
els are due to release of TRH (59,60). These find-
ings indicate that mild hypothermia is associated
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with widespread physiologic alterations, the full ex-
tent and implications of which have yet to be de-
fined.

INTERFERENCE WITH INTERPRETATION OF
DIAGNOSTIC TESTS OR MONITORS

Twenty-four-hour holter monitoring of poikilo-
thermic patients showed mild hypothermia (33.9°C)
to be associated with a reduction in heart rate, a
prolongation of the Q-T interval, and an increase in
short-term heart rate variability (23,61). These
changes are the result of slowed myocardial con-
duction, a decrease in the resting membrane poten-
tial, and prolongation of the action potential and
refractory period (21). At a rectal temperature of
33.6°C, the ECG may mimic acute myocardial in-
farction (62).

Monitoring neuromuscular blockade by com-
pound electromyogram may be more misleading
during mild to moderate hypothermia, compared
with monitoring mechanical twitch tension (63).
Furthermore, mild hypothermia to 31.9°C markedly
prolonged the rate at which serum concentration of
d-tubocurarine and twitch tension equilibrated, re-
sulting in an apparent marked delay in onset of pa-
ralysis which could be interpreted as decreased sen-
sitivity. Hypothermia also itself decreases the ad-
ductor pollicis twitch response, prompting the
recommendation to maintain the temperature of this
muscle above 35°C (64) for optimal monitoring of
neuromuscular block.

Hypothermia reduces carbon dioxide production
and may lead to excessive respiratory alkalosis if
appropriate ventilatory adjustments are not made.
Furthermore, owing to altered gas solubilities,
blood gas tensions and pH are affected by hypother-
mia, although the clinical significance of these
changes is controversial. With each °C decrease,
pH increases by 0.015, PCO, decreases by 4.4%,
and PO, decreases by 7.2% (6). Misinterpretation of
“corrected’” blood gas results may result in relative
brain tissue acidosis and abolition of CBF autoreg-
ulation.

In mildly hypothermic surgical patients, conven-
tional finger pulse oximetry was less successful
(18% failure rate) and reliable than pulse oximetry
of the nasal septum, which was successful in all 50
estimations (65). An alternative to finger pulse ox-
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imetry should therefore be considered during hypo-
thermic techniques.

Mild hypothermia slightly prolongs the latency of
somatosensory (SSEPs) (66,67) and corticomotor
evoked potentials (CMEPs) (66). Amplitude of
SSEPs is variably affected in the range of 32°-36°C,
while CMEP amplitude increases with decreasing
temperature. Brainstem auditory evoked potential
(BAEP) latency increases with hypothermia, but
mild hypothermia does not interfere with BAEP
monitoring. Hypothermia to 33.5°C causes the elec-
troencephalogram (EEG) to shift toward theta and
beta frequencies and reduces the alpha frequency
component (68). Total EEG power and peak EEG
frequency appear to be linearly related to core tem-
perature (69). While there are definitive effects of
mild hypothermia on evoked potentials and EEG,
they may be expected to interfere only rarely with
proper interpretation.

REWARMING CONSIDERATIONS

Vigorous peripheral rewarming of hypothermic
patients is known to lead to a decrease in central
temperature, which may be responsible for the ven-
tricular fibrillation and cardiovascular collapse oc-
casionally observed in victims rewarmed from ac-
cidental hypothermia. Fortunately, this tempera-
ture afterdrop is small during rapid peripheral
rewarming from mild hypothermia (70) but can still
be associated with moderate decreases in blood
pressure and peripheral vascular resistance (71).

Rewarming after mild hypothermia generally
takes place at a brisk pace in the operative setting
so that near-normothermic conditions can be
achieved at the time of emergence from anesthesia.
The most widely employed methods to reverse mild
hypothermia rely on peripheral warming, such as
warming the ambient temperature and through the
use of convective warming devices. Peripheral re-
warming from mild hypothermia is also associated
with the afterdrop phenomenon, originally de-
scribed with rewarming from more severe hypo-
thermic states. Core temperature continues to de-
crease for approximately 30 min after peripheral
rewarming from mild hypothermia (72). The magni-
tude of this afterdrop was about 0.6°C. If hypother-
mia is rapidly reversed without proper monitoring
of and attention to this phenomenon, patients may
be recovered at a lower core temperature than the

intraoperative target, with resultant potentially dan-
gerous consequences. Our clinical experience indi-
cates that a hypothermic ‘‘overshoot’ of ~0.5-
0.7°C can readily occur after peripheral cooling to
mildly hyperthermic temperature.

Thermoregulatory vasoconstriction normally lim-
its heat transfer between body compartments. The
efficacy of forced-air warming in reversing hypo-
thermic core temperature may therefore be limited
(73) until thermoregulatory vasoconstriction ceases.
Patients rendered hypothermic intraoperatively,
even to a mild degree, appear to be at higher risk for
postoperative hypothermia. This is likely due to the
fact that the critical surgical intervention associated
with the risk of cerebral ischemia occurs toward the
end of a long case. Even with special equipment, it
is relatively difficult to rewarm cold patients
quickly in an operating room environment (73,74).
The rate of intraoperative surface rewarming is ap-
proximately 0.7°C/h and depends inversely on body
surface area (BSA). Despite active peripheral re-
warming measures after therapeutic intraoperative
mild hypothermia, Baker et al.’s (34) hypothermic
patients still had a significantly lower body temper-
ature on arrival to ICU when compared to the nor-
mothermic group (35.8 vs. 37.1°C). Approximately
10-12 h thereafter, hypothermic patients were actu-
ally slightly hyperthermic when compared to pa-
tients who were kept at normal temperature intra-
operatively. This finding has raised some concern
as hyperthermia is detrimental to brain tissue recov-
ering from ischemic injury (35).

Accepted warming devices include electrically
heated humidified breathing circuits, fluid warmers,
electrical and circulating water warming blankets,
convective forced-air warmers, and infrared heating
lamps. These devices have all been associated with
complications primarily consisting of burns and
skin irritation. Inasmuch as intraoperative mild hy-
pothermic techniques require rapid rewarming,
these devices may present a certain hazard even in
the hands of experienced personnel.

Postoperative hypothermia frequently causes
thermoregulatory shivering. Core temperature at
the end of surgery is the most important determi-
nant for the occurrence of postoperative shivering
(75). Between 33.5° and 36.5°C, a decrease by 1°C
increased the probability of shivering by 33%. The
associated higher myocardial oxygen demand may
induce myocardial ischemia in susceptible patients.
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Metabolic activation from shivering can also result
in the development of respiratory acidosis (76) as
well as increased tissue oxygen extraction (77) and
resulting systemic hypoxemia and metabolic acido-
sis. Shivering also increases patient discomfort and
leads to more aggressive medication with muscle
relaxants (78), antihypertensives, analgesics, and
sedatives. It increases intraocular pressure (79);
strains surgical repairs (80); and impedes blood
pressure, ECG, and pulse oximetry monitoring.

EXCESSIVE HYPOTHERMIA

Thermoregulatory vasoconstriction normally lim-
its the degree of mild hypothermia to about 34°C
even in neurologically intact anesthetized patients.
However, this may not necessarily be the case in
patients undergoing craniotomy or those with trau-
matic head injury (1) perhaps because of a central
impairment of the thermoregulatory response. Un-
intentionally more severe hypothermia may also re-
sult from failure to monitor core temperature and
from failure to account for the factors which influ-
ence cooling rates. In addition, sudden major hem-
orrhage and, in the trauma setting, associated vas-
cular injuries and low perfusion states can quickly
lower temperature beyond the intended value. The
human response to cooling is quite variable and ap-
pears to depend on age, gender, and body mass. In
the awake state, older men are less able to defend
core temperature than younger men. This age dif-
ference was not observed in women, however (81).
Baker et al. (34) noted a strong correlation between
BSA and the rate of intraoperative temperature
change.

ADVERSE CLINICAL OUTCOME
WITH HYPOTHERMIA

In 100 consecutive noncardiac surgery patients,
temperature of <36°C was associated with in-
creased mortality but also with more advanced age,
longer duration of surgery, and greater operative
fluid requirement (82). Hypothermia is significantly
associated with mortality in severely injured trauma
patients (45). In another study, hypothermic trauma
victims with core temperatures <35°C had a higher
mortality than their normothermic counterparts.
However, when they were stratified by severity of
injury, posttraumatic hypothermia did not appear to
exert an independent effect on outcome (83).
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Hypothermic patients require more intensive
nursing care with more frequent interventions (1)
and, as a result, longer recovery room stays (84). In
a prospective, randomized trial of mild hypothermia
(32°-33°C) for severe closed head injury, Marion et
al. (3) found no increase in complications when
compared to normothermia. However, upon re-
warming, the hypothermic group required more in-
tense therapy to keep ICP at the same level as the
normothermic group. Hypothermia established at
32°-33°C and maintained for 48 h in closed head
injury may have been associated with a higher rate
of sepsis (1).

The argument has been made that mild hypother-
mia causes relatively modest physiologic distur-
bances, which are reversible and ultimately have no
influence on patient outcome. Of concern, how-
ever, are a number of reports which link mild or
moderate hypothermia to increased mortality in
trauma (85-87) and postoperative surgical intensive
care (82). While occurrence of hypothermia in these
reports may well have represented only a marker of
severity of injury or illness, the data certainly do
not inspire extreme confidence in the safety of hy-
pothermia. Answers regarding the clinical signifi-
cance of hypothermia-related complications remain
vague, but the accumulated evidence speaks against
mild hypothermia being a reliably innocuous inter-
vention. Even if the technique were proven to be
free of complications in expert hands, the potential
for harm still exists. If embraced too hastily, it may
develop undesirable popularity with less than qual-
ified personnel, who may be further handicapped by
inadequate technical and ancillary support.

RISK ASSESSMENT AND PRECAUTIONS

The ability to identify risk factors for mild hypo-
thermia-related complications should be useful to
all clinicians managing patients at high risk for neu-
rologic injury, be it in the operating room or in the
ICU. In the trauma patient, aortic clamping, large
volume fluid resuscitation, metabolic acidosis, and
hypothermia are said to be mutually reinforcing risk
factors for perioperative circulatory collapse
(45,44). In a cohort of 97 vascular surgery patients,
Frank et al. (88) have identified advancing age (>60
years), cold operating room temperature, and gen-
eral anesthesia (vs. epidural), but not duration of
surgery or extent of intravenous. fluid administra-
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TABLE 1. Risk considerations for clinical decision making regarding mild hypothermia

a. Minimal risk

Younger patients (<60 years) without coronary disease

Normal coagulation and immune status
Low probability of massive fluid resuscitation

b. Mildly increased risk

Predisposition to coronary artery disease

Patients with low BSA

Need for major fluid resuscitation
Older patients (>60 years)
Immune suppression

c. Moderately increased risk

Definitive diagnosis of coronary artery disease

Reversal of opioid effect in mildly hypothermic patients
with documented moderate/severe coronary disease

Baseline coagulopathy

Inadequate technical resources or personnel trained in the
prevention and treatment of hypothermic complications

d. Contraindications

Cryoglobulinemia; other cold-induced disease

BSA, body surface area.

tion, as risk factors for the development of intraop-
erative mild hypothermia. Advancing age was
found to increase rewarming time-in the recovery
room.

An intermediate step toward risk assessment for
mild hypothermia is the identification of conditions
which predispose to its rapid development and, pos-
sibly, hypothermic overshoot. Furthermore, ad-
verse physiologic consequences of mild hypother-
mia may combine to add risk if imposed on patients
with functional impairments in body systems af-
fected by hypothermia. To complete a risk assess-
ment matrix, disease states known to be associated
with complications after mild hypothermia should
be considered. The schema in Table 1 gives a frame-
work for clinical reasoning in the decision to insti-
tute mild hypothermia. Until the clinical benefits of
mild hypothermia are more clearly delineated, a
careful consideration of its adverse effects should
enter into any decision to employ this technique for
protection of CNS components at risk. Many of the
risk factors can undoubtedly be neutralized by a
highly organized and experienced team of anesthe-
siologists, intensivists, and surgeons. However, the
individual patient can be sufficiently complex as to
warrant careful considerations of all risks and ben-
efits. Mild hypothermia is easily achieved, is widely
prevalent in operating rooms, and as yet has not
been proven to carry excessive risk. These are not,
however, sufficiently compelling reasons to expand
its use routinely to all patients at risk for neurologic
injury.
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