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Early observations in patients under general anesthesia set the stage
for the concept that anesthetic agents could also serve to protect the brain
from an ischemic or hypoxic insult [1]. Anesthetics may affect ischemic or
traumatic brain injury by numerous mechanisms, and their potential for
cerebroprotection and brain resuscitation is clinically relevant. In design-
ing the anesthetic plan for patients at high risk of cerebral ischemia (e.g.,
carotid endarterectomy, open-heart procedures), it is useful to consider
the relative degree of protection provided by various agents. Similarly,
treating patients with an anesthetic after cardiac arrest or a focal ischemic
insult may be a consideration in improving overall neurological outcome.
Much of our knowledge surrounding anesthetics and cerebroprotection
originates from animal studies in which outcomes following cerebral ische-
mia have been compared with different anesthetic regimens. Typically, the
protective properties of anesthetic agents have been compared as pretreat-
ments in the presence of an accompanying baseline anesthetic. Relatively
few data are available that compare outcomes when administering the an-
esthetic only after the onset of ischemia/reperfusion or comparing out-
comes in awake animals who are free of potentially confounding baseline
anesthetic agents.

In interpreting cerebroprotection studies, it is important to character-
ize the experimental model of ischemia by the magnitude, duration, and
distribution of cerebral blood flow (CBF) reduction. By definition, global
cerebral ischemia affects whole brain, but CBF reduction may be complete
(zero blood flow) or incomplete. Studies of incomplete ischemia can be of
special interest if they mimic clinically relevant brain insults. However,
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these findings can also be difficult to evaluate if CBF is not measured,
because various models and experimental paradigms produce different
levels of residual blood flow and target-cell injury. Rodent models of global
forebrain ischemia are commonly employed because of their simplicity and
because they preserve brain stem blood flow and respiratory and cardiovas-
cular stability. Global forebrain blood flow (i.e., to cortex, striatum, hippo-
campus) is severely reduced (0—5 ml/min/100 g) in these models. Finally,
focal ischemic models are employed to study stroke (e.g., middle cerebral
artery occlusion that produces a spatial blood flow gradient from core to
periphery). The period of occlusion is usually several hours in order to
produce consistent infarction. In permanent stroke models, the occlusion
is not reversed. In contrast, many experimental approaches incorporate
transient, or reversible, focal models in which occlusion is followed by
reperfusion.

The purpose of this chapter is to evaluate the cerebroprotective or
resuscitative potential of commonly used anesthetics from data obtained
in experimental systems. Relevant studies that provide clues to the mecha-
nisms of anesthetic action in brain injury are discussed. Lastly, the effect
of each agent on CBF and cerebral oxygen consumption (CMRO,) is sum-
marized because these variables may directly impact ischemic outcomes in
vivo.

m Barbiturates
Protective Effects in Cerebral Ischemia

The first studies to evaluate efficacy of barbiturates in the setting of
global cerebral ischemia found them to be of great therapeutic value. In
these studies, the duration of ischemia required to produce severe alter-
ation in the neurological examination was much greater in animals treated
with barbiturates as compared to animals studied under local or very light
levels of alpha-chloralose anesthesia [2—4]. However, these studies were
flawed in that the control group of animals were subjected to significant
surgical intervention and ischemia with minimal anesthesia and were likely
to have very high baseline catecholamine levels. These factors may have
negatively impacted ischemic tolerance in the control animals [5, 6].

Further optimism about the potential clinical utility of barbiturates as
a therapeutic modality in the setting of global cerebral ischemia came from
a study in primates [7]. This led one group to design a study of barbiturate
efficacy in patients following cardiac arrest [8]. However, other labora-
tories, with better controlled experimental designs, were unable to con-
firm any beneficial effects of barbiturates with transient global ischemia
in dog [9, 10] or cat [11] models. In addition, subsequent attempts to
repeat the initial positive results in a primate model of transient global
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ischemia were unsuccessful [12]. It was, therefore, not surprising that
the randomized clinical trial of thiopental loading in comatose survivors
of cardiac arrest did not support the use of thiopental for brain resuscita-
tion [13]. |

The possible utility of barbiturates in the setting of focal ischemia was
first addressed by Yatsu and colleagues [14], and many subsequent studies
have demonstrated a therapeutic role for barbiturates {15—20]. However,
several issues remain unresolved. First, part of the benefit associated with
barbiturate treatment may be related to the drug’s ability to decrease brain
temperature [21]. Second, it is not clear if barbiturates are as protective in
permanent focal ischemia as in transient occlusion [22]. Clinical studies
employing barbiturates for brain protection have shown mixed results in
acute stroke and cerebrovascular surgery [23—25]. The most convincing
evidence for efficacy of barbiturates has been reported in patients with
focal brain injury following open-heart surgery and warm cardiopulmo-
nary bypass [26]. Although some concern has been expressed concerning
the validity of this study [27], it was the first randomized study in humans
that demonstrated improved outcome resulting from barbiturate therapy
(28].

Therefore, barbiturates do not provide protection following transient
global ischemia but do protect the brain from injury when administered
in specific models of focal ischemia. Although the mechanism of protection
is unknown, it is likely to be multifactorial.

Potential Mechanisms

Numerous studies document the depressant effect of barbiturates on
both CBF and CMRO,; in many species, including man [29, 30]. These
agents do not alter CBF autoregulation [31]; however, the response to
hypoxia [31] and hypercapnia is attenuated as a function of metabolic
depression [32, 33]. The mechanism of metabolic depression is unknown
but is thought to be related to enhanced vy-aminobutyric acid (GABA)
binding and consequent increased intracellular chloride ion flux [34]. Early
studies in cerebroprotection suggested that barbiturate-associated protec-
tion is mediated via reduced metabolic demand {35]. Greatest efficacy has
been observed in paradigms in which electroencephalographic (EEG) activ-
ity remains present during the ischemic period (e.g., focal ischemia),
whereas little efficacy is present when the EEG is ablated during ischemia
(e.g., complete transient global ischemia). Nevertheless, the metabolism
hypothesis has not been substantiated because subsequent findings suggest
that reduction of cerebral metabolism does not necessarily result in cere-
bral protection [36, 37].

Barbiturates may also have direct effects on vascular tone that could
affect ischemic outcomes. In isolated cerebral arteries, thiamylal and thio-
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pental, but not pentobarbital, produce dose-related contraction. However,
these effects are not consistently observed in pial vessels in situ [32]. Under
basal conditions, CBF is lower in animals anesthetized with pentobarbital
as compared to halothane or fentanyl [38]. Although blood flow can be
similarly reduced during middle cerebral artery occlusion regardless of
anesthetic, postischemic hyperemia is much more robust in cats anesthe-
tized with pentobarbital as compared to halothane or fentanyl [38]. The
therapeutic implications of accentuated postischemic hyperemia with pen-
tobarbital anesthesia remain unevaluated. Barbiturates also decrease ago-
nist-induced cerebral vasoconstrictor responses [39-41], either by blocking
calcium entry into vascular smooth muscle [42] or by inhibiting protein
kinase C activation [43, 44]. Although reduction in CBF may be important
in the mechanism of brain protection from head trauma with elevated
intracranial pressure (ICP), it does not appear important in ischemic mech-
anisms [45].

Numerous studies have demonstrated that intracellular calcium in-
creases during ischemia, activating phospholipases and liberating free fatty
acids such as arachidonic acid [46, 47], with consequent amplification of
prostanoid production and brain injury. Barbiturates could be of thera-
peutic value because these agents decrease the production of free fatty
acids during ischemia [48]. However, barbiturates do not attenuate accu-
mulation of prostanoids during reperfusion [49].

Although some barbiturates act as free radical scavengers, this is not
a property of all barbiturates purported to have therapeutic efficacy in
the setting of ischemia. For example, phenobarbital, pentobarbital, and
methohexital do not act as oxygen radical scavengers [50]. Godin and asso-
ciates [61] hypothesized that barbiturate protection may be related to stabi-
lization of hemocoordinated iron complexes in red blood cells with de-
creased radical production. Leukocytes are also important as generators
of oxygen radicals during reperfusion. Therefore, barbiturates may indi-
rectly reduce oxygen radical production by virtue of depressing leukocyte
function [52].

Many insults, including ischemia, hypoxia, hypoglycemia, and head
trauma, have been demonstrated to cause accumulation of excitatory
amino acids (e.g., glutamate, aspartate) in brain [53-55] that directly
mediate neurotoxicity and neuronal loss. Barbiturates have been found
to be potent antagonists of excitatory amino acid receptors in vitro
[66-58]. This is important because glutamate receptor antagonists re-
duce neuronal injury and histopathology associated with focal ischemia
[69-61].

In summary, barbiturates appear to be protective in the setting of focal
and incomplete, but not complete, global cerebral ischemia. It is not clear
why barbiturates do not decrease brain injury in subjects exposed to tran-
sient complete global ischemia. The mechanism of protection during focal
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ischemia may be due to decreased production of free fatty acids during
ischemia [48] or inhibition of excitotoxic mechanisms [56—58].

B Inhalational Anesthetics
Neuroprotection During Ischemia/Reperfusion

The first inhalational anesthetic to be considered a neuroprotectar ¢
was cyclopropane when used in patients undergoing temporary carotid
artery occlusion [1]. Subsequent work compared halothane to pentobarbi-
tal. Several authors reported improved neurological outcome after middle
cerebral artery occlusion in pentobarbital anesthetized animals as com-
pared to halothane anesthesia [15, 17]. Michenfelder and Milde [17] re-
ported significant species dependence in these outcomes.

As isoflurane was employed commonly in the 1970s and 1980s, its role
as a possible cerebral protectant was evaluated. Initial studies indicated
that it could prolong survival time in mice subjected to severe hypoxia and
slow the development of ischemic metabolic changes in dogs exposed to
severe hypotension [62]. In primates exposed to temporary focal ischemia,
isoflurane produced a similar degree of neuroprotection as thiopental [63,
64]. Consistent with a neuroprotective role of isoflurane, retrospective
analysis of data from the Mayo Clinic indicates that isoflurane-anesthetized
patients demonstrated fewer ischemic EEG changes during carotid surgery
than patients anesthetized with enflurane or halothane [65]. In addition,
the ischemic threshold (the CBF at which ischemic EEG changes occur)
was higher in halothane-anesthetized patients as compared to patients
anesthetized with isoflurane [66]. Data from animal studies indicate that
the ischemic threshold with isoflurane is greater than that of methohexital
[67] but not different from halothane [68].

Although initial studies suggested an advantage of isoflurane and bar-
biturates over halothane as neuroprotectants, subsequent well-controlled
animal studies revealed a similar degree of protection for each of these
three agents [20, 69-71]. Likewise, the degree of neuroprotection pro-
duced by halothane is similar to that produced by a new inhalational anes-
thetic, sevoflurane [72]. It is now apparent that the protective effects of
halothane can be best appreciated in experimental paradigms that allow
strict control over brain temperature [73]. This observation is important
because the degree of neuroprotection provided by mild hypothermia
(temperature reduction of 3° C) is far greater than that provided solely by
inhalational anesthetics [36].

In summary, inhalational anesthetics (isoflurane, halothane, and sevo-
flurane) reduce brain injury in animal models of focal or incomplete ische-
mia by mechanisms that are not presently understood. In the sections that
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follow, the vasodilator effects of the inhalational anesthetics are explored
to gain clues to their potential neuroprotective mechanisms.

Vasodilator Mechanisms

Inhalational anesthetics cause an increase in CBF in vivo [74-77] and
vasodilation of cerebral blood vessels in vitro [78, 79]. The cerebral hyper-
emic response is only transient in subprimate mammals [80], but we have
recently found it to be sustained in primates [81]. Increased CBF is accom-
panied by a decrease in CMRO, and consumption of glucose (75, 82], but
high-energy phosphate metabolism is maintained [83]. The decrease in
CMRO; is linked to a decrease in EEG activity and plateaus once the EEG
becomes isoelectric [84]. Because these agents both increase CBF and de-
crease brain metabolism, it is unlikely that the vasodilation is metabolically
mediated. Desflurane, a new inhalational anesthetic, also produces an in-
crease in CBF and decrease in CMRO, that is similar in magnitude to the
other potent inhalational anesthetics [85]. Many different mechanisms
have been suggested for the vasodilation associated with inhalational anes-
thetics, including nitric oxide production, which is also implicated in the
cellular basis of ischemia injury.

Nitric Oxide Under baseline pentobarbital anesthesia, inhibition of
nitric oxide synthase (NOS) prevents cerebral hyperemia to halothane,
isoflurane, and nitrous oxide in dogs [86]. This effect is reversible by
L-arginine administration, further supporting a direct role of NO in the
mechanism of isoflurane-induced cerebral hyperemia [87]. Others have
found that NO is an important mediator of halothane-induced cerebral
vasodilation in pial vessels [88]. The source of NO production may be
perivascular nerves [89], astrocytes [90], and/or parenchymal neurons [91].
The role of NO in the mechanism of ischemia-induced brain injury is
controversial, and ischemic outcomes are best interpreted by keeping in
mind which isoforms of NOS (e.g., endothelial vs neuronal) are inhibited
in the experimental paradigm. Several laboratories have demonstrated that
NOS inhibition results in improved outcome from focal ischemia [92, 93].
However, others have suggested that inhibition of NO production may
increase brain injury because of accentuated CBF reduction and that ad-
ministering L-arginine (inferentially increasing NO production) may de-
crease brain injury [94, 95]. Therefore, if inhalational anesthetics alter
brain NO, then they could also alter ischemic injury by a NO-mediated
mechanism.

Prostanoids Indomethacin prevents aortic vasodilation produced by
halothane, enflurane, and isoflurane in vitro, suggesting that prostanoids
may be important in the mechanism of inhalational anesthetic-induced
vasodilation [96]. In vivo prostanoids clearly play an important role in
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the mechanism of isoflurane-induced vasodilation [87]. For example, in-
domethacin markedly attenuates isoflurane induced vasodilation [87].
Whether increased prostanoid production is important in the cerebropro-
tection associated with inhalational anesthetics is unclear. Increased levels
of prostanoids have been implicated as detrimental in ischemia, yet vasodi-
lator prostanoids may facilitate better recovery of CBF during postischemic
reperfusion. Further, any effect of prostanoids to increase cyclic adenosine
monophosphate (cCAMP) levels in brain may be associated with improved
recovery from cerebral ischemia [97].

Excitatory Amino Acids Another potential mechanism for inhala-
tional anesthetic—induced cerebral hyperemia and amelioration of ische-
mic brain injury involves the excitatory neurotransmitter, glutamate. Sev-
eral inhalational anesthetics bave been demonstrated to have important
interactions with the N-methyl-D-aspartate (NMDA) class of glutamate re-
ceptors. Enflurane inhibits glutamate binding at the NMDA receptor,
probably by interacting with the glycine recognition site [98]. Similarly,
halothane, isoflurane, and methoxyflurane all disturb glutamate transmis-
sion in vitro, both at the glutamate binding site and via receptor-channel
activation mechanisms [99]. In addition, isoflurane significantly reduces
L-glutamate and NMDA-mediated intracellular calcium fluxes [100].
These actions suggest that the inhalational anesthetics could inhibit ische-
mic injury mediated via glutamate toxicity. However, not all data support
such a role. For example, neither halothane nor isoflurane affect the re-
lease of glutamate or glycine during global cerebral ischemia [101]. In fact,
halothane and enflurane increase glutamate release from cortical synapto-
somes [102].

In summary, under controlled experimental conditions, inhalational
anesthetics provide a degree of neuroprotection that is qualitatively similar
to that provided by barbiturates in the setting of focal or incomplete ische-
mia. The mechanism of neuroprotection is unknown but may be related
to nitric oxide synthesis, prostanoid production, or disruption of glutamate
neurotransmission.

m  Nitrous Oxide

There are inconsistencies among studies regarding the degree of neu-
roprotection provided by barbiturates in animal models of ischemia. Some
authors have speculated that the reason for the discrepancy is the inconsis-
tent use of nitrous oxide. In general, barbiturates have limited efficacy as
cerebral protectants in studies that employed nitrous oxide as part of the
anesthetic management. However, barbiturates were efficacious in those
studies that did not employ nitrous oxide as part of the anesthetic manage-
ment [103].
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The question of whether nitrous oxide is detrimental to neurological
outcome following either focal or global ischemia has never been directly
evaluated. However, two studies have addressed the effects of nitrous ox-
ide on anesthetic-induced neuroprotection in the setting of transient focal
ischemia. Nitrous oxide decreases isoflurane’s efficacy as a neuroprotectant
[104], but this is not the case for barbiturates [105]. The authors’ hypothe-
size that nitrous oxide attenuates isoflurane-induced neuroprotection by
increasing cerebral metabolism [104]. In contrast, metabolism would be
maximally reduced with large doses of barbiturates and potentially unre-
sponsive to nitrous oxide administration [105].

Nitrous oxide causes a mild degree of cerebral vasodilation via a mech-
anism that involves activation of NOS [86]. The effect of nitrous oxide,
alone, on neurological ischemic tolerance is not known. When it is adminis-
tered alone, for surgery, it does not provide adequate anesthesia and is
associated with high systemic catecholamines. The high systemic catechol-
amine state, in turn, would be expected to result in worsening of neurologi-
cal outcome following cerebral ischemia [69, 104]. Nitrous oxide may atten-
uate the protective effects of other anesthetics when these other agents are
administered at low levels.

2 Ketamine

Ketamine is a noncompetitive NMDA-receptor antagonist [106] that
inhibits agonist-induced calcium ion influx. It also attenuates the systemic
catecholamine response that normally occurs during incomplete forebrain
ischemia [107]. Ketamine has only been evaluated as a neuroprotectant in
the setting of focal or incomplete ischemia. In a gerbil model, ketamine
increased the incidence of cerebral infarction during carotid ligation rela-
tive to pentobarbital [108]. However, lack of control of brain temperature
during anesthesia and surgery may have biased these results. In rat, some
(107, 109] but not all studies [110, 111] demonstrate that high-dose keta-
mine can protect the brain following incomplete forebrain ischemia or
transient focal ischemia [111]. The mechanism of protection for ketamine
may relate to its properties as an NMDA-receptor antagonist or its ability
to attenuate systemic catecholamine release.

® Etomidate

Etomidate (1-(1-phenylethyl)-1H-imidazole-5-carboxylic acid ethyl es-
ter) decreases CBF and CMRO, without altering blood pressure [112].
Although the mechanism for the reduction in CBF is believed to be due
to a reduction in CMRO,, this has not been proved. Etomidate is used
widely for neuroprotection [113] because of its low incidence of hemody-
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namic instability at doses sufficient to depress the EEG [114, 115]. The
agent attenuates ischemia-induced dopamine release in the corpus stria-
tum in rat [116]. Pretreatment with etomidate doubles the time to EEG
isoelectricity in response to intravenously administered potassium cyanide
[117] and decreases brain injury following a transient focal ischemic/anoxic
insult (Levine preparation) in rats [118]. In moderate incomplete global
ischemia (significant residual EEG activity present during insult), etomi-
date delays the loss of cerebral high-energy phosphates and accumulation
of brain lactate [119]. This effect presumably is due to drug-induced de-
pression of cerebral metabolism [120], thereby decreasing substrate need
at a time of decreased substrate availability. At equally potent doses (doses
that produced full ablation of EEG), etomidate and thiopental produce
similar neuroprotection in a model of severe forebrain ischemia in rat
[121].

Therefore, etomidate is an effective therapeutic agent to prevent brain
injury in focal or incomplete ischemia (i.e., like barbiturates, it requires
residual neuronal activity for efficacy). Although etomidate has a major
advantage over thiopental in that etomidate does not cause hemodynamic
instability at a dose that causes maximal reduction in EEG activity, it is
associated with significant adrenocortical suppression, even when adminis-
tered as a single injection [122]. The drug’s effect on adrenocortical func-
tion has greatly limited its utility in routine anesthetic care but not its utility
in neurosurgical cases in which patients are routinely administered high
doses of steroids.

m  Opiates

At clinically relevant doses, the effect of opiates on CBF is limited and
linked to a reduction in CMRO,. However, some agents have indirect ef-
fects that independently affect CBF; for example, morphine causes release
of histamine [123] with the potential for cerebral vasodilation. Opiates may
also alter CBF because they inhibit release of acetylcholine, norepineph-
rine, substance P, and dopamine [124] and stimulate adenylate cyclase
activity [125] in the central nervous system [124]. Many of the varying
effects of opiates on CBF and vascular responses are accounted for by
these indirect effects, the agent’s concentration, and by the distribution of
the different opiate receptors within the vasculature. For example, p-, 8-,
and k-receptor agonists can produce vasodilation, while e-receptor agonists
vasoconstrict [126].

In general, most currently available, clinically relevant opioids have
little effect on CBF, CMRO,, and ischemic tolerance. Further, the nonspe-
cific opiate receptor antagonist naloxone does not improve outcomes after
focal ischemia in cats [127] or primates [128, 129]. More recently, several
investigators have evaluated the potential therapeutic effect of k-receptor
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agonists. This follows, in large part, from the finding that brain levels of
the k-receptor agonist dynorphin are markedly reduced in regions previ-
ously exposed to ischemia [130]. Clinically, k-receptor agonists (e.g., nal-
buphine) appear to mediate analgesia and sedation. There is also mounting
evidence that k-receptor agonists may be of benefit [131-134] because they
attenuate excitotoxic mechanisms presynaptically [135, 136] and decrease
intracellular calcium entry [135, 137], not because of blood flow effects
[138, 139]. These agents have efficacy even if administered 6 hours after
the onset of focal ischemia [134, 140-142]. The k, subtype appears to be
the specific k-receptor that is involved in the mechanism of brain injury
(139, 143]. Further development and testing of these agents in both neuro-
protection and pain management is likely.

® Propofol

Propofol (2,6-di-isopropyl phenol) depresses cerebral metabolism by an
unknown mechanism, decreases CBF in a manner linked to decreased
CMRO, [144-146] and reduced cerebral electrical activity [147], and atten-
uates the increase in extracellular concentration of glycine that ordinarily
accompanies ischemia [101]. The mechanism of reduced CBF is not likely
to be vascular because in vitro propofol causes vasodilation, not vasocon-
striction [148]. Relative to halothane/nitrous oxide anesthesia, propofol
improves CBF recovery but not neuropathologic changes following experi-
mental global ischemia (149]. In the setting of transient focal ischemia,
propofol’s potential neuroprotection has been compared to other anesthet-
ics with conflicting results. Improved neurological outcome and decreased
neuronal damage relative to fentanyl/nitrous oxide have been reported
[150]. However, others have found no improvement in these parameters
with propofol-treated rats as compared to halothane [151]. Although it
has not been directly tested against any of the barbiturates, it is unlikely
to offer any substantial benefit over these agents. Propofol has a shorter
half-life than thiopental, but it produces a similar degree of cardiovascular
depression [152] and is currently much more expensive.

m o,-Adrenoreceptor Agonists

ag-Receptor agonists are becoming more commonly used agents in
clinical medicine and are frequently used as baseline anesthetics (e.g., ure-
thane) in animal models of ischemia. The ay-agonist dexmedetomidine
produces sedation [153], decreases CBF, and transiently decreases ICP
[154] without changing CMRO, [155, 156]. Binding sites for a,-agonists
within brain are most highly concentrated in areas involved with the con-
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trol of cardiovascular function [157]. Cerebral arteries are rich with post-
synaptic ag-adrenoceptors [158] that, when stimulated, cause vasoconstric-
tion [159]. The effector mechanism for both vasoconstriction and sedation
involves a G protein [160] that inhibits adenylate cyclase and decreases
cAMP accumulation [161].

Although these agents appear to be cerebroprotectants, the mechanism
of protection may not be related to their ability to act at the a,-receptor.
For example, immediate, postischemic administration of idazoxan, an o,-
receptor antagonist, ameliorates brain injury in rats exposed to transient
forebrain ischemia [162, 163]. The proposed mechanism of protection is
accentuated catecholamine release within brain [162, 164]. However, the
ao-adrenergic agonist dexmedetomidine also improves neurological out-
come from transient incomplete and focal ischemia [5, 165, 166] and is
hypothesized to act by attenuating ischemia-induced catecholamine re-
lease within brain [167]. Because it is unlikely that both increases and
decreases in brain catecholamines are protective, some other mechanism
must be involved. For example, both idazoxan and dexmedetomidine
could act at the imidazole receptor [168]. A supportive finding is that
idazoxan (an agy-receptor antagonist and an agent with activity at the
imidazole receptor) is neuroprotective, whereas SKF 86466, a highly
selective ag-receptor antagonist without imidazole receptor activity, is
not protective [168].

m Benzodiazepines

Benzodiazepines decrease cerebral metabolism and blood flow [169—
171]. At least a portion of their effect in brain is linked to modulation of
postsynaptic responses to GABA and receptor-linked chloride channels
[34]. Associated with GABA-induced, increased chloride conductance is a
generalized reduction in EEG and brain function [172]. After ischemia,
GABAergic neurons are preserved in hippocampus but with a decreased
number of postsynaptic GABA -benzodiazepine binding sites. This sug-
gests that benzodiazepines, by increasing receptor affinity, could be useful
in reducing ischemic neuronal death, at least in the hippocampus [173].
Also consistent with this hypothesis is the observation that enhanced GABA
neurotransmission after cerebral ischemia reduces loss of hippocampal
neurons [174, 175].

Benzodiazepines and barbiturates have been reported to have similar
efficacy after incomplete global cerebral ischemia [176], but not following
severe hypoxia. Seizure activity during reperfusion accentuates postische-
mic brain injury in cerebral cortex, thalamus, and brain stem {177], and
diazepam has been shown to be particularly effective in ameliorating neo-
cortical injury when there is a relatively high incidence of postischemic
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seizures [177]. However, midazolam was not effective in ameliorating brain
injury in a multiple cerebral embolic model [178].

@ Lidocaine

Lidocaine was originally evaluated as a neuroprotectant because, as a
local anesthetic, it was hypothesized to partially preserve transmembrane
ion gradients during ischemia. In addition, lidocaine could reduce release
of excitatory amino acids during ischemia by blocking intracellular sodium
influx. At high doses, lidocaine can reduce cerebral metabolism [179] but
appears to have little direct effect on CBF [180].

Intravenous lidocaine can protect the brain from injury associated with
cerebral air embolism [181, 182]. After transient focal ischemia, lidocaine
as a bolus transiently improves brain electrical activity but does not reduce
infarct size [183]. However, continuous intravenous infusion during both
ischemia and reperfusion does result in decreased infarct volume and a
higher regional cerebral blood flow [180]. The mechanism of protection
is probably related to lidocaine’s ability to inhibit ischemic depolarization,
which occurs in the lesion periphery or penumbra. After global ischemia,
lidocaine has provided variable levels of protection that were dependent
on the drug dose, the accompanying baseline anesthetic of the study, and
the duration of the ischemic insult [184—186].

m Summary

A number of anesthetic agents have significant cerebroprotective po-
tential and alter ischemic tolerance in vivo, at least within specific experi-
mental conditions such as focal or incomplete, global cerebral ischemia. As
compared to the unanesthetized state, each of these agents has some influ-
ence on CBF and metabolism, and many have significant effects on vascu-
lar responses to dilator stimuli. Relevant studies that provide clues to the
mechanisms of anesthetic action in brain injury have been reviewed, and
it is likely that these mechanisms are multifactorial and may overlap from
one class of agents to another. Lastly, there is a clear need for further
studies that specifically evaluate the neuroprotective mechanism of each
agent, determine the effect on outcomes when the anesthetic is adminis-
tered only as a posttreatment at clinically relevant concentrations, and com-
pare anesthetics with the unanesthetized state when possible.
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