Name: _______________________

2016 CA-1 TUTORIAL TEXTBOOK  10th Edition

STANFORD UNIVERSITY MEDICAL CENTER
DEPARTMENT OF ANESTHESIOLOGY

Aileen Adriano, M.D.
Sandra Sacks, M.D.
Kelly O’Hear, M.D.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>3</td>
</tr>
<tr>
<td>Contributors</td>
<td>3</td>
</tr>
<tr>
<td>Key Points and Expectations</td>
<td>7</td>
</tr>
<tr>
<td>Goals of the CA-1 Tutorial Month</td>
<td>8</td>
</tr>
<tr>
<td>Checklist for CA-1 Mentorship Intraoperative Didactics</td>
<td>9</td>
</tr>
<tr>
<td>CA-1 Tutorial Didactic Schedule</td>
<td>10</td>
</tr>
<tr>
<td>CA-1 Mentorship Intraoperative Didactic Lectures</td>
<td></td>
</tr>
<tr>
<td>Standard Monitors</td>
<td></td>
</tr>
<tr>
<td>Inhalational Agents</td>
<td></td>
</tr>
<tr>
<td>MAC and Awareness</td>
<td></td>
</tr>
<tr>
<td>IV Anesthetic Agents</td>
<td></td>
</tr>
<tr>
<td>Rational Opioid Use</td>
<td></td>
</tr>
<tr>
<td>Intraoperative Hypotension &amp; Hypertension</td>
<td></td>
</tr>
<tr>
<td>Neuromuscular Blocking Agents</td>
<td></td>
</tr>
<tr>
<td>Difficult Airway Algorithm</td>
<td></td>
</tr>
<tr>
<td>Fluid Management</td>
<td></td>
</tr>
<tr>
<td>Transfusion Therapy</td>
<td></td>
</tr>
<tr>
<td>Hypoxemia</td>
<td></td>
</tr>
<tr>
<td>Electrolyte Abnormalities</td>
<td></td>
</tr>
<tr>
<td>Hypothermia &amp; Shivering</td>
<td></td>
</tr>
<tr>
<td>PONV</td>
<td></td>
</tr>
<tr>
<td>Extubation Criteria &amp; Delayed Emergence</td>
<td></td>
</tr>
<tr>
<td>Laryngospasm &amp; Aspiration</td>
<td></td>
</tr>
<tr>
<td>Oxygen Failure in the OR</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td></td>
</tr>
<tr>
<td>Local Anesthetics</td>
<td></td>
</tr>
<tr>
<td>Malignant Hyperthermia</td>
<td></td>
</tr>
<tr>
<td>Perioperative Antibiotics</td>
<td></td>
</tr>
<tr>
<td>Topics for Discussion</td>
<td></td>
</tr>
<tr>
<td>Fun Facts</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION TO THE CA-1 TUTORIAL MONTH

We want to welcome you as the newest members of the Department of Anesthesia at Stanford! Your first weeks and months as an anesthesia resident are exciting, challenging, stressful, and rewarding. Regardless how much or how little experience you have in the field of anesthesiology, the learning curve for the next few months will be very steep. In addition to structured lectures and independent study, you will be primarily responsible for patients as they undergo anesthesia and surgery.

Several years ago, before the development of this mentoring and tutorial system, CA-1’s had little structure to their first month. While there were regular intra-operative and didactic lectures, the nuts and bolts of anesthesiology were taught with little continuity. CA-1’s worked with different attendings every day and spent as much time adjusting to their particular styles as they did learning the basics of anesthesia practice. Starting in 2007, the first month of residency was overhauled to include mentors: each CA-1 at Stanford was matched with an attending or senior resident for a week at a time. In addition, a tutorial curriculum was refined to give structure to the intra-operative teaching and avoid redundancy in lectures. By all accounts, the system has been a great success!

There is so much material to cover in your first couple months of residency that independent study is a must. Teaching in the OR is lost without a foundation of knowledge. Afternoon lectures are more meaningful if you have already read or discussed the material. This booklet serves as a launching point for independent study. While you review the tutorial with your mentor, use each lecture as a starting point for conversations or questions.

During your mentorship, we hope you can use your mentor as a role model for interacting with patients, surgeons, consultants, nurses and other OR personnel. This month, you will interact with most surgical specialties as well as nurses in the OR, PACU, and ICU. We suggest you introduce yourself to them and draw on their expertise as well.

Nobody expects you to be an independent anesthesia resident after just one month of training. You will spend the next three years at Stanford learning the finer points of anesthesia practice, subspecialty anesthesiology, ICU care, pre-operative and post-operative evaluation and management, etc. By the end of this month, we hope you attain a basic knowledge and skill-set that will allow you to understand your environment, know when to ask for help, and determine how to direct self-study. Sprinkled throughout this book, you’ll find some light-hearted resident anecdotes from all the good times you’ll soon have, too.

CA-1 Introduction to Anesthesia Lecture Series:

The Introduction to Anesthesia Lecture series, given by attendings designed to introduce you to the basic concepts of anesthesia. Topics covered include basic pharmacology of anesthetics, basic physiology, and various clinical skills and topics. This lecture series starts on July 5th at 4pm in the Anesthesia Conference room. A schedule of lectures is included on pg 10. The last lecture is July 28th. You will be relieved of all clinical duties to attend these lectures. The department has purchased Miller’s *Basics of Anesthesia* for use as a reference for these lectures.
ACKNOWLEDGEMENTS

Thanks to Janine Roberts and Kathrina De La Cruz for their hard work and assistance in constructing the CA-1 Mentorship Textbook.

Thanks to Dr. Pearl for his support and assistance with this endeavor. His guidance is appreciated by all. If you ever feel like you’re staying too late, know that Dr. Pearl is probably still working in his office when you leave the OR.

Thanks to Dr. Macario, our Residency Program Director, who will be one of the first attendings to know each of you by your first name.

Special thanks to Dr. Ryan Green, Class of 2008, founder of the CA-1 mentorship program, and principal editor of the first edition of the CA-1 Mentorship Textbook.

Lastly, thanks to all of the resident and faculty mentors at Stanford University Medical Center, Palo Alto VA, and Santa Clara Valley Medical Center for all of their time and effort spent teaching Stanford anesthesia residents.

As you start this July, don’t be too hard on yourself if you miss an IV or an intubation. If it were that easy, no one would need residency. Also, try to go with the flow if plans change on you suddenly. Flexibility is very important in this field. May your first month be a smooth transition to your anesthesia career.

Welcome to Stanford Anesthesia. We hope you love it as much as we do! Please do not hesitate to contact us with any questions or concerns.

Aileen Adriano, MD  
Sandra Sacks, MD  
Kelly O’Hear, MD

CONTRIBUTORS


Editors:
Sandra Sacks, MD  
Kelly O’Hear, MD  
Aileen Adriano, MD

Section Editors:
Francesca Betti, MD  
Sean Paschall, MD  
Tenille Bany, MD  
Emmett Culligan, MD  
Wendy Ma, MD  
Erin Connor, MD  
Andrew Guistini, MD  
David Creighton, MD  
Sara Smith, MD  
Noelle Fabian, MD

Resident Mentors:
Dan Moy, MD  
Jocelyn Wong, MD

Faculty Mentors:
Sophie Turkmani-Bazzi, MD  
Rett Quattlebaum, MD  
Cynthia Khoo, MD  
Anna Harter, MD  
Melissa Vogelsong, MD  
Sean Paschall, MD  
Sarah Stone, MD  
Amy Kloosterboer, MD  
Jason Reminick, MD  
Anna Bettini, MD  
David Creighton, MD  
Luke McCage, MD  
Patty Olszynski, MD  

 Timothy Angelotti, MD, PhD  
 Martin Angst, MD  
 Naola Austin, MD  
 Jennifer Basarab-Tung, MD  
 Marianne Chen, MD  
 Pamela Flood, MD  
 Natalya Hasan, MD  
 Boris Heifets, MD  
 Praveen Kalra, MD  
 Steven Lipman, MD  
 Javier Lorenzo, MD  
 Amy Lu, MD  
 Chris Painter, MD  
 Jessica Patterson, MD  
 Roya Saffary, MD  
 Sunita Sastry, MD  
 Amit Saxena, MD
Mentor Coordinator:
Lindsay Raleigh, MD

Resident Mentors:
Nick Anast, MD
Kevin Blaine, MD MPH
Sarah Clark, MD
Rob Groff, MD
Leslie Hale, MD
John Johns, MD
Barrett Larson, MD
Ken Lau, MD
Josh Melvin, MD
Rafee Obaidi, MD
Shelly Pecorella, MD
Anil Pranigrahi, MD PhD
Alex Quick, MD
Amit Saxena, MD
Jan Sliwa, MD
Shana Sonobe, MD
Tanya Travkina, MD

Faculty Mentors:
Martin Angst, MD
Jennifer Basarab-Tung, MD
Melissa Berhow, MD, PhD
Divya Chander, MD, PhD
Marianne Chen, MD
Jeremy Collins, FRCA, MB ChB
Anna Crawford, MD, MS
Larry Chu, MD, MS
Alimorad Djalali, MD
Anthony Doufas, MD, PhD
Ruth Fanning, MD
Sara Goldhaber-Fiebert, MD
Natalya Hasan, MD
Erie Hennessey, MD
Maeve Hennessey, MD
Gilliam Hilton, FRCA, MB ChB
Aileen Adriano, MD
Martin Angst, MD, PhD
Fiona Clements, MD
Anna Crawford, MD, PhD
Divya Chander, MD, PhD
Vivek Kulkarni, MD
Kevin Malott, MD
Marc Dobrow, MD, MBA
Morgan Dooley, MD, MPH
King Ganguy, MD
Estee Garazi, MD
Brice Gaudiliere, MD, PhD
Michael Marques, MD, PhD
Vanessa Moll, MD
Mary McHenry, MD, MS
Jared Pearson, MD
Catherine Reid, MD, MS
Dora Rodriguez, MD
James Tan, MD
Vivianne Tawfik, MD, PhD
Tanya Travkina, MD
Luis Verduzco, MD

Editors:
Natalya Hasan, MD
Aileen Adriano, MD

Section Editors:
Kevin Blaine, MD
Shelly Pecorella, MD
Lindsay Raleigh, MD
Natalie Telusca, MD
Tammy Wang, MD

Mentor Coordinator:
Marie McHenry, MD

Resident Mentors:
Marianne Chen, MD
Marc Dobrow, MD, MBA
Morgan Dooley, MD, MPH
King Ganguy, MD
Estee Garazi, MD
Brice Gaudiliere, MD, PhD
Michael Marques, MD, PhD
Vanessa Moll, MD
Mary McHenry, MD, MS
Jared Pearson, MD
Catherine Reid, MD, MS
Dora Rodriguez, MD
James Tan, MD
Vivianne Tawfik, MD, PhD
Tanya Travkina, MD
Luis Verduzco, MD

Faculty Mentors
Aileen Adriano, MD
Martin Angst, MD, PhD
Alex Butwick, MB, FRCA, MS
Divya Chander, MD, PhD
Fiona Clements, MD
Anna Crawford, MD, PhD
Vivek Kulkarni, MD
Kevin Malott, MD
Morgan Dooley, MD, MPH
King Ganguy, MD
Estee Garazi, MD
Brice Gaudiliere, MD, PhD
Michael Marques, MD, PhD
Vanessa Moll, MD
Mary McHenry, MD, MS
Jared Pearson, MD
Catherine Reid, MD, MS
Dora Rodriguez, MD
James Tan, MD
Vivianne Tawfik, MD, PhD
Tanya Travkina, MD
Luis Verduzco, MD

Kimberly Valenta, MD
Karl Zheng, MD


Editors:
Becky Wong, MD
Natalya Hasan, M.D
Aileen Adriano, MD

Resident Mentors:
Catherine Reid, MD
Andrea Goodrich, MD
Roy Esaki, MD
Tatyana Travkina, MD
Calvin Lew, MD
Boris Heifets, MD, PhD
Josh Edwards, MD, MBA
Aileen Adriano, MD

Faculty Mentors:
Tim Angelotti, MD, PhD
Martin Angst, MD, PhD
Aileen Adriano, MD
Divya Chander, MD, PhD
Fiona Clements, MD
Jeremy Collins, MD
Tara Conaby, MD
Ed Riley, MD
Diana McGregor, MD
Andrew Patterson, MD, PhD
Karl Zheng, MD


Editors:
Becky Wong, MD
Aileen Adriano, MD

Resident Mentors:
Sarah Bain, MD
Christie Brown, MD
Dora Castaneda, MD
Michael Charles, MD, PhD
Karl Zheng, MD

Erin Hennessey, MD  
Jody Leng, MD  
Javier Lorenzo, MD  
David Medina, MD  
Brett Miller, MD  
John Peterson, MD  
Rohith Piyaratna, MD  
Becky Wong, MD  
Andrew Wall, MD  
Romy Yun, MD  

Faculty Mentors  
Tim Angelotti, MD, PhD  
Martin Angst, MD, PhD  
Lindsay Atkinson, MD  
Alex Butwick, MD  
Divya Chander, MD, PhD  
Larry Chu, MD, MS  
Jeremy Collins, MD  
Ana Crawford, MD  
Ali Djalali, MD  
Anthony Doufas , MD, PhD  
Ruth Fanning, MD  
Sara Goldhaber-Fiebert, MD  
Lee Hanowell, MD  
Gill Hilton, MD  
Jerry Ingrande, MD, MS  
Richard Jaffe, MD, PhD  
Vivek Kulkarni, MD, PhD  
Steve Lipman, MD  
Alex Macario, MD, MBA  
Kevin Malott, MD  
Diana McGregor, MD  

John Nguyen, MD  
Periklis Panousis, MD  
Suma Ramzan, MD  
Ed Riley, MD  
Vanila Singh, MD  
Pedro Tanaka, MD, PhD  
Ying Ting, MD  
Kimberly Valenta, MD  
Karl Zheng, MD  


Editors:  
Jessica Kentish, MD  
William Hightower, M.D  
Tara Cornaby, MD  

Resident Mentors and Contributing Authors:  
Sarah Bain, MD  
Marisa Brandt, MD  
Erin Hennessey, MD  
Billy Hightower, MD  
Jesse Hill, MD  
Meredith Kan, MD  
Zoe Kaufenberg, MD  
Jessica Kentish, MD  
Zeest Khan, MD  
Milo Lochbaum, MD  
Nate Ponstein, MD  
Tzevan Poon, MD  

Faculty Mentors  
Aileen Adriano, MD  
Tim Angelotti, MD, PhD  
Jeremy Collins, MD  
Tara Conaby, MD  
Anthony Doufas, MD, PhD  
Ruth Fanning, MD  
Sara Goldhaber-Fiebert, MD  
Cosmin Guta, MD  
Leland Hanowell, MD  
Vivek Kulkarni, MD  
Hendrikus Lemmens, MD, PhD  
Diana McGregor, MD  
Alex Macario, MD, MBA  
Kevin Malott, MD  
Ed Riley, MD  
Cliff Schmiesing, MD  
Pedro Tanaka, MD  
Alex Tzabazis, MD  


Editors:  
Jerry Ingrande, MD  
Aileen Adriano, MD  


Editors:  
Ryan Green, MD, PhD  
Aileen Adriano, MD
KEY POINTS AND EXPECTATIONS

Key Points:
- The program will last 4 weeks.
- Mentors will consist of faculty members and senior residents (CA-2s and CA-3s).
- CA-1s scheduled to start in the Stanford GOR will be assigned a different mentor each week (CA-1s scheduled to begin at the Palo Alto VAMC or Santa Clara Valley Medical Center will be mentored according to local program goals and objectives).
- Faculty will provide one-on-one mentoring while senior residents will provide one-on-one mentoring with oversight by a supervising faculty member.
- Mentors (both faculty and residents) and CA-1s will take weekday call together. CA-1s will take call with their mentor, but only in a shadowing capacity; both mentor and CA-1 take DAC (day-off after call) together. CA-1s will be expected to attend scheduled daily afternoon lecture on their DAC days.
- All CA-1s (including those starting at Stanford, VAMC, and SCVMC) will receive the syllabus of intra-operative mini-lecture topics to be covered with their mentors. These mini-lectures provide goal-directed intra-operative teaching during the first month. CA-1s will document the completion of each mini-lecture by obtaining their mentors’ initials on the “Checklist for CA-1 Mentorship Intra-operative Didactics.”
- CA-1s will receive verbal feedback from their mentors throughout the week, as appropriate, as well as at the end of each week. Mentors will communicate from week to week to improve longitudinal growth and mentorship of the CA-1.

Expectations of CA-1 Residents:
- Attend the afternoon CA-1 Introduction to Anesthesia Lecture Series.
- Participate in goal-directed learning by completing the CA-1 Mentorship Intra-operative Didactics with your mentors.
- Discuss cases with your mentor the night before.
- Take weekday call with your mentor. You will be expected to stay as long as the ongoing cases are of high learning value. You will take DAC day off with your mentor.
- CA-1s at SUH are not expected to take weekend call with your mentor (for those at the Valley and VA, discuss with your mentor).

Expectations of Senior Resident Mentors:
- Senior mentors will take primary responsibility for discussing the case, formulating a plan, and carrying out the anesthetic with their CA-1; if concerns arise, the senior mentor will discuss the case with the covering faculty member.
- Instruct CA-1s in the hands-on technical aspects of delivering an anesthetic.
- Participate in goal-directed learning by completing the CA-1 Mentorship Intra-operative Didactics with your CA-1.
- Take weekday call with your CA-1. When you go home, your CA-1 goes home. When you have a DAC, your CA-1 has a DAC.
- Provide timely feedback to your CA-1 every day and at the end of the week.
- Provide continuity of teaching by communicating with the CA-1’s other mentors.

Expectations of Faculty Mentors:
- Participate in goal-directed learning by completing the CA-1 Mentorship Intra-operative Didactics with your CA-1.
- Take weekday call with your CA-1. When you go home, your CA-1 goes home. When you have a DAC, your CA-1 has a DAC.
- Provide timely feedback to your CA-1 every day and at the end of the week.
- Provide continuity of teaching by communicating with the CA-1’s other mentors.
GOALS OF THE CA-1 TUTORIAL MONTH

Anesthesia is a “hands-on” specialty. Acquiring the fundamental knowledge, as well as cognitive and technical skills necessary to provide safe anesthesia, are essential early on in your training. The CA-1 Mentorship Program and the CA-1 Introduction to Anesthesia Lecture Series will provide you with the opportunity to achieve these goals. The following are essential cognitive and technical skills that each CA-1 resident should acquire by the end of their first month.

I. Preoperative Preparation:
   a. Perform a complete safety check of the anesthesia machine.
   b. Understand the basics of the anesthesia machine including the gas delivery systems, vaporizers, and CO2 absorbers.
   c. Set up appropriate equipment and medications necessary for administration of anesthesia.
   d. Conduct a focused history with emphasis on co-existing diseases that are of importance to anesthesia.
   e. Perform a physical examination with special attention to the airway and cardiopulmonary systems.
   f. Understand the proper use of laboratory testing and how abnormalities could impact overall anesthetic management.
   g. Discuss appropriate anesthetic plan with patient and obtain an informed consent.
   h. Write a pre-operative History & Physical with Assessment & Plan in the chart.

II. Anesthetic Management
   a. Placement of intravenous cannulae. Central venous catheter and arterial catheter placement are optional.
   b. Understanding and proper use of appropriate monitoring systems (BP, EKG, capnography, temperature, and pulse oximeter).
   c. Demonstrate the knowledge and proper use of the following medications:
      i. Pre-medication: Midazolam
      ii. Induction agents: Propofol, Etomidate
      iii. Neuromuscular blocking agents: Succinylcholine and at least one non-depolarizing agent
      iv. Anticholinesterase and Anticholinergic reversal agents: Neostigmine and Glycopyrrolate
      v. Local anesthetics: Lidocaine
      vi. Opioids: Fentanyl and at least one other opioid
      vii. Inhalational anesthetics: Nitrous oxide and one other volatile anesthetic
      viii. Vasoactive agents: Ephedrine and Phenylephrine
   d. Position the patient properly on the operating table.
   e. Perform successful mask ventilation, endotracheal intubation, and LMA placement.
   f. Recognize and manage cardiopulmonary instability.
   g. Spinal and epidural anesthesia are optional.
   h. Record intra-operative note and anesthetic data accurately, punctually, and honestly.

III. Post-operative Evaluation
   a. Transport a stable patient to the Post Anesthesia Care Unit (PACU)
   b. Provide a succinct anesthesia report to the PACU resident and nurse.
   c. Complete the anesthesia record with proper note.
   d. Leave the patient in a stable condition.
   e. Make a prompt post-operative visit and leave a note in the chart (optional but strongly encouraged).
# SUGGESTED CHECKLIST FOR CA-1 MENTORSHIP
## INTRAOPERATIVE DIDACTICS

**Mentors initial completed lectures**

<table>
<thead>
<tr>
<th>First Days</th>
<th>July 7-8</th>
<th>Discuss GOR Goals and Objectives for CA-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Discuss etiquette in the OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discuss proper documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discuss proper sign out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discuss post-op orders</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine check</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week One</th>
<th>July 11-15</th>
<th>Standard Monitors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inhalational Agents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAC &amp; Awareness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV Anesthetic Agents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rational Opioid Use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intra-operative Hypotension &amp; Hypertension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neuromuscular Blocking Agents</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week Two</th>
<th>July 18-22</th>
<th>Difficult Airway Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fluid Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transfusion Therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypoxemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrolyte Abnormalities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PONV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extubation Criteria &amp; Delayed Emergence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week Three</th>
<th>July 25-29</th>
<th>Laryngospasm &amp; Aspiration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Oxygen Failure in the OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anaphylaxis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local Anesthetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malignant Hyperthermia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Perioperative Antibiotics</td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Time</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>7/5/2016</td>
<td>Tuesday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/6/2016</td>
<td>Wednesday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/7/2016</td>
<td>Thursday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/11/2016</td>
<td>Monday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/12/2016</td>
<td>Tuesday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/13/2016</td>
<td>Wednesday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/18/2016</td>
<td>Monday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/19/2016</td>
<td>Tuesday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/20/2016</td>
<td>Wednesday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/21/2016</td>
<td>Thursday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/25/2016</td>
<td>Monday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/27/2016</td>
<td>Wednesday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td>7/28/2016</td>
<td>Thursday</td>
<td>4:00-6:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic Anesthetic Monitoring

ASA Standards for Basic Anesthetic Monitoring

STANDARD I

"Qualified anesthesia personnel shall be present in the room throughout the conduct of all general anesthetics, regional anesthetics, and monitored anesthesia care."

Caveats:

- If there is a direct known hazard to the provider (e.g. radiation) which might require intermittent remote observation of the patient, some provision for monitoring the patient must be made.

- In the event that an emergency requires the temporary absence of the person primarily responsible for the anesthetic, the best judgment of the anesthesiologist will be exercised in comparing the emergency with the anesthetized patient’s condition and in the selection of the person left responsible for the anesthetic during the temporary absence.

STANDARD II

"During all anesthetics, the patient’s oxygenation, ventilation, circulation, and temperature shall be continually evaluated."

OXYGENATION

- Must monitor both inspired gas and blood oxygenation, with appropriate alarms:
  1) Inspired Gas
     - O2 Analyzer* in anesthesia machine
     - Low O2 Concentration Alarm*
  2) Blood oxygenation
     - Must be quantitative (vs blue/not blue!)
     - Usually use Pulse Ox* variable pitch tone and alarm* must be audible
     - ASA also recommends adequate illumination/exposure of patient to assess color

TEMPERATURE

- Monitoring required when clinically significant changes in body temperature are anticipated (can potentially skip if a short case or if it’s a short case w light-moderate sedation)

CIRCULATION

- EKG* from beginning of case to when you leave the anesthetizing location. Minimum 3-lead EKG, 5-lead if higher concern for cardiac issues
- Blood Pressure & Heart Rate* – minimum q 5 minutes
- Other Continuous Assessment of Circulatory function*: palpate peripheral pulse, heart sounds, etc.

VENTILATION

- Chest rise, auscultation of breath sounds are useful but not required (can be the only ventilation monitor for light sedation cases)
- Continuous capnography* required for all patients under GA or moderate to deep sedation with EtCO2 alarm*. Must confirm ETT or LMA placement w EtCO2
- When on a ventilator, disconnect alarm required* tidal volume measurement encouraged

Pulse Oximetry

Terminology

- $S_dO_2$ (Fractional Oximetry) = $O_2Hb / (O_2Hb + Hb + MetHb + COHb)$
- $S_pO_2$ (Functional Oximetry/Pulse Oximetry) = $O_2Hb / (O_2Hb + Hb)$

Fundamentals

- The probe emits light at 660 nm (red, for Hb) and 940 nm (infrared, for $O_2Hb$); sensors detect the light absorbed at each wavelength.
- Photoplethysmography is used to identify arterial flow (alternating current $= AC$) and cancels out the absorption during non-pulsatile flow (direct current $= DC$); the patient is their own control!
- The S value is used to derive the $S_dO_2$ (1:1 ratio = $S_dO_2$ 85% → why a pulse ox not connected to the patient reads usually 85%)

Pulse Oximetry Pearls

- Methemoglobin (MetHb) - Similar light absorption at 660 nm and 940 nm (1:1 ratio); at high levels, $S_dO_2$ approaches 85%. When $S_dO2$ is >85%, you will get a falsely low pulse ox reading with MetHb. If $S_dO2$ is actually <85%, you will get a falsely high reading.
- Carboxyhemoglobin (COHb) - Similar absorbance to $O_2Hb$. At 50% COHb, $S_dO_2$ = 50% on ABG, but $S_dO_2$ may be 95%, thus producing a falsely HIGH $S_dO_2$.
- Other factors producing a falsely LOW $S_dO_2$ = dyes (methylene blue > indocyanine green > indigo carmine), blue nail polish, shivering/other motion, ambient light, low perfusion (low cardiac output, profound anemia, hypothermia, elevated SVR), malpositioned sensor.
- Factors with NO EFFECT on $S_dO_2$ = bilirubin, HbF, HbS, SuHb, acrylic nails, fluorescein dye.
- Cyanosis - clinically apparent with 5 g/dl desaturated Hb. At Hb = 15 g/dl, cyanosis occurs at $S_dO_2$ = 80%; at Hb = 9 g/dl (i.e. anemia), cyanosis occurs at $S_dO_2$ = 86%.
EKG

3-Electrode System
- Allows monitoring of Leads I, II, and III, but only one lead (i.e. electrode pair) can be examined at a time while the 3rd electrode serves as ground.
- Lead II is best for detecting P waves and sinus rhythm.

Modified 3-Electrode System
- If you have concerns for anterior wall ischemia, move L arm lead to V5 position, and monitor Lead I for ischemia.

5-Electrode System
- Four limb leads + V5 (left anterior axillary line, 5th ICS), allows monitoring of 7 leads simultaneously.
- V5 is 75% sensitive for detecting ischemic events; II + V5 is 80% sensitive; II + V4 + V5 together is 98% sensitive.

5-Electrode System
- If you have concerns for anterior wall ischemia, move L arm lead to V5 position, and monitor Lead I for ischemia.

Noninvasive Blood Pressure

- Automated, microprocessor-assisted interpretation of oscillations in the NIBP cuff.
- MAP is primary measurement; SBP and DBP are derived from algorithms.
- Bladder should encircle >50% of extremity; width should be 20-50% greater than diameter of extremity.
- cuff too small = falsely HIGH BP. Cuff too big = falsely LOW BP.

NIBP, Continued

- More distal sites have higher BP since wave reflection distorts the waveform, resulting in exaggerated systolic BP and pulse pressure at more distal sites (radial SBP = aortic SBP)
- BP varies by position: The difference in blood pressure (mm Hg) at two different sites of measurement equals the height of an interposed column of water (cm H2O) multiplied by a conversion factor (1 cm H2O = 0.74 mm Hg). (photo courtesy of Morgan and Mikhail)

Arterial Blood Pressure

Indications
- Moment-to-moment BP changes anticipated and rapid detection is vital.
- Planned pharmacologic or mechanical manipulation.
- Repeated blood sampling.
- Failure of NIBP.
- Supplementary diagnostic information (e.g. perfusion of dysrhythmic activity, volume status, IABP).

Transducer Setup
- Zeroing = exposes the transducer to air-fluid interface at any stopcock, thus establishing $P_{atm}$ as the “zero” reference pressure.
- Leveling = assigns the zero reference point to a specific point on the patient; by convention, the transducer is “leveled” at the right atrium.

Capnography

- Both the number and tracing provide much physiologic information
  - bronchospasm (upsloping trace)
  - inadequate circulation resulting from hypotension indicating BP is too low for pt (number decreasing)
  - pulmonary embolism (decreased number and increased different between ETCO2 and PaCO2)
  - adequacy of CPR eliminating need for pulse checks and compression interruption (ETCO2>10; if sudden increase in ETCO2, then likely have ROSC)
  - pt breathing spontaneously (more rounded trace)
  - esophageal intubation, circuit disconnect (no ETCO2 tracing)
  - exhausted CO2 absorbent (ETCO2 does not return to 0-5)

For example tracings visit: http://www.capnography.com/find.htm
Capnography

- Measures exhaled CO₂ (and other gases).
- Time delay exists due to length and volume of sample tube as well as sampling rate (50-500 ml/min).
- Anything distal to your Y-piece increases dead space

Capnogram Phases
I. Dead space gas exhaled
II. Transition between airway and alveolar gas
III. Alveolar plateau
IV. Inspiration

Temperature
Monitoring is now required if any anticipated change in temperature

Sites
- Pulmonary artery = “Core” temperature (gold standard)
- Tympanic membrane - correlates well with core; approximates brain/hypothalamic temperature
- Esophageal - correlates well with core (avoid w/ esophageal varices)
- Nasopharyngeal - correlates well with core and brain temperature (careful with coagulopathy, can get refractory epistaxis)
- Rectal - not accurate (temp affected by LE venous return, enteric organisms, and stool insulation)
- Bladder - approximates core when urine flow is high, may be significant delay between bladder temp reading and true temp
- Axillary - inaccurate; varies by skin perfusion
- Skin - inaccurate; varies by site
- Oropharynx – good estimate of core temperature; recent studies show correlation with tympanic and esophageal temperatures

I just intubated, now what?!

- Adjust (vent settings, volatile)
- A temp probe
- Acid (OG tube)
- Antibiotics
- Air (Forced Air, aka Bair Hugger)
- Another IV
- A line

Capnography Example Traces
A. Spontaneous ventilation
B. Mechanical ventilation
C. Prolonged exhalation (spontaneous)
D. Emphysema
E. Sample line leak
F. Exhausted CO₂ absorbant
G. Cardiogenic oscillations
H. Electrical noise

Other Monitors/Adjuncts to Consider
- Foley
- OG tube
- CVC
- Esophageal stethoscope
- ICP
- Pulmonary Artery catheter
- BIS monitor/Sedline

References
- ASA. Standards for basic anesthetic monitoring
Inhalational Agents

**Pharmacokinetics**

- Mechanism of action is complex, likely involving numerous membrane proteins and ion channels.
- The pharmacokinetics of inhalational agents is divided into four phases:
  - Absorption
  - Distribution (to the CNS/brain = site of action)
  - Metabolism (minimal)
  - Excretion (minimal)
- Goal is to produce a partial pressure of gas in the alveoli that will equilibrate with the CNS to render anesthesia.

**Uptake and Distribution**

- Fi = inspiratory concentration – fresh gas leaving the anesthesia machine mixes with the gas in the circuit. Patient not necessarily receiving the set concentration of gas.
- Higher the fresh gas flow, smaller circuit, small circuit absorption equate to closer inspired gas concentration to the set amount.
- PA is determined by input (delivery) minus uptake (loss):
  - Input: inspired partial pressure, alveolar ventilation, breathing system.
  - Uptake: gas taken up by the pulmonary circulation. Solubility in blood (defined by the blood gas partition coefficient), cardiac output, alveolar-to-venous partial pressure difference.
- Highly soluble gases = more gas required to saturate blood before it is taken up by CNS.
- High CO = equivalent to a larger tank; have to fill the tank before taken up by CNS.
- F a lags behind F i due to uptake by the pulmonary circulation. How fast the ratio F a/F i rises equates to how quickly the onset of the effect. Remember F a = Arterial partial pressure = CNS partial pressure.
- The greater the uptake (in blood), the slower the rate of rise of F a/F i.
- The gases with the lowest solubilities in blood (i.e. desflurane) will have the fastest rise in F a/F i (Nitrous Oxide has a higher solubility than desflurane but has a faster onset due to concentration effect).
- They also have the fastest elimination.

**Anesthetic Gas Properties**

<table>
<thead>
<tr>
<th>Gas</th>
<th>Blood:Gas Partition Coefficient</th>
<th>Partial Pressure (mmHg) at 20°C</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrous Oxide</td>
<td>0.47</td>
<td>39000</td>
<td>104%</td>
</tr>
<tr>
<td>Desflurane</td>
<td>0.42</td>
<td>681</td>
<td>6%</td>
</tr>
<tr>
<td>Sevoflurane</td>
<td>0.69</td>
<td>160</td>
<td>2.15%</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>1.40</td>
<td>240</td>
<td>1.2%</td>
</tr>
<tr>
<td>Halothane</td>
<td>2.3</td>
<td>243</td>
<td>0.75%</td>
</tr>
<tr>
<td>Enflurane</td>
<td>1.8</td>
<td>175</td>
<td>1.68%</td>
</tr>
</tbody>
</table>

Example: Blood Gas partition coefficient of nitrous = 0.47 at steady state 1ml of blood contains 0.47 as much nitrous oxide as does 1 ml of alveolar gas. In other words, at steady state if your fraction inspired gas is 50% N2O then 1ml of blood will contain 0.47*0.5 ml's of N2O or 0.235 ml's.
Uptake and Distribution Continued

• **Alveolar Blood Flow** – In the absence of any shunt, alveolar blood flow equals CO
  - Low solubility gases will be affected less by CO than highly soluble gases because so little is taken up by the blood to begin with.
  - Low CO states predispose patients to overdosage with soluble agents as the rate of rise of FA/FI will be much faster than normal
  - Right to Left shunt (e.g. mainstem intubation) – Will increase alveolar partial pressure and decrease arteriolar partial pressure. The decreased arteriolar partial pressure is more pronounced in poorly soluble gases and onset of anesthesia slower.

• **Concentration** – increases the rate of rise of FA/FI by the “concentration effect”
  - Example: If 50% of a anesthetic gas is taken up by the circulation, then at 20% (20 out of 100) then the remaining alveolar concentration will be 11% (10 parts out of 90).
  - What is the concentration is 80%? Then at 80% (80 out of 100) then the remaining alveolar concentration will be 17% (80 parts out of 60).
  - Lastly, the alveolar gas concentration is actually even higher. The amount of gas taken up by the circulation has to be replaced by the inspired gas to prevent alveolar collapse. So for the 80% scenario, the 40 parts taken up has to be replaced by 40 parts of 80% inspired gas. Resulting in a final alveolar concentration of 72%.

  - Nitrous is the main gas that this can be applied. A concentration effect of one gas (like nitrous) can augment another gas – this is called the second gas effect.

Pharmacodynamics

• All inhalational agents decrease CMO2 and increase CBF (via direct vasodilatation)
  - Increases in CBF can increase ICP

• All agents cause a dose-related decrease in blood pressure by decreasing SVR (but maintaining CO)

• All agents produce muscle relaxation (except N2O)

• The older inhalational agents (halothane, enflurane) cause decreases in myocardial contractility
  - The newer agents have little to no effect

• All inhalational agents produce a dose-dependent depression of the ventilatory response to hypercarbia and hypoxia

• Increase RR (via direct activation of respiratory center in CNS) + decrease tidal volume = preserved minute ventilation

Theory of Mechanism

• No clear mechanism

• Anesthetic gases have been shown to affect many different ion channels, second messengers, and metabolic processes.

• GABA, NMDA, glycine receptor subunits have all been shown to be affected.

• Potency of anesthetic has been roughly linked to lipid solubility.

• Part of mechanism may involve anesthetic gases dissolving in lipophilic sites on cells.

Nitrous Oxide

• Low potency (MAC 104% - can never reach 1 MAC!)
  - Insoluble in blood
  - Facilitates rapid uptake and elimination

• Commonly administered as an anesthetic adjuvant

• Does not produce skeletal muscle relaxation

• Increases CBF and CMO2

• Can potentially contribute to PONV (but can be controlled with antiemetic ppx as shown by the ENIGMA II trial.

• Can diffuse into air filled cavities and cause expansion of air filled structures (pneumothorax, bowel, middle ear, ET tube balloons, pulmonary blebs, etc.)
  - Nitrous oxide can enter cavities faster than nitrous can leave
  - Often contraindicated in these settings

• Myocardial depression may be unmasked in CAD or severe hypotension

• NMDA antagonist -> may have analgesic effects

• Prolonged exposure can result in bone marrow depression and peripheral neuropathies

• Not a trigger for MH (unlike volatile agents)

• Often used as adjuvant to volatile if BP low.

• Should periodically let air out of the ETT cuff if using nitrous to avoid tracheal injury.

Isoflurane

• Highly pungent

• Second most potent of the clinically used inhalational agents (MAC 1.2%)

• Preserves flow-metabolism coupling in the brain (i.e. CMO2 to CBF)
  - Highly popular for neuranaesthesia

• Has been implicated for causing "coronary steal"
  - Dilation of "normal" coronary arteries causing blood to be diverted away from maximally dilated, stenotic vessels to vessels with more adequate perfusion

• Causes vasodilatation
  - Decreases BP
    - Increases CBF (usually seen at 1.6 MAC)
    - Minimal compared to halothane
    - Increases ICP (usually at above 1 MAC; short lived)
  - Minimal compared to halothane

• At 2 MAC produces electrically silent EEG

Sevoflurane

• Half as potent as isoflurane (MAC 2.15%)

• Rapid uptake and elimination

• Sweet smelling, non-pungent
  - Quick uptake and sweet smell make this agent very popular for inhalational induction

• Potent bronchodilator

• Can form CO in desiccated CO2 absorbent
  - Can cause fires

• Forms Compound A in CO2 absorbent (nephrotoxic in rats)
  - Recommended to keep fresh gas flows >2 L/min to prevent rebreathing of Compound A (not formation of it)
  - Occurs in alkali such as barium hydroxide lime or soda lime but NOT calcium hydroxide
Desflurane

- Lowest blood:gas solubility coefficient (lower than N₂O)
- Very fast uptake and elimination
- Low potency (MAC 6.6%)
- High vapor pressure (669 mmHg) is close to atmospheric pressure therefore boils at sea level
  - Must be stored in a heated, pressurized vaporizer so pressure stays constant (the vaporizer is set to 2 atm).
  - **Remember that the anesthetic affect correlates to the partial pressure NOT the concentration.** You will get questions about administering des and sevo in Denver or having iso in a sevo vaporizer and what should you set the concentration at.
- Very pungent
  - Can cause breath-holding, bronchospasm, laryngospasm, coughing, salivation when administered to an awake patient via face mask
- Can form CO in desiccated CO₂ absorbent (more so than other volatiles)
- Can cause an increased sympathetic response (tachycardia, hypertension) when inspired concentration is increased rapidly

References

2. Miller’s Anesthesia 6th edition; Miller R.; Churchill Livingstone, 2005

It was the first case in the morning. I checked the gases and they were all filled up to the top. 10 minutes into the case, half the sevo was gone and I was running low flows. I was like what the heck! My med student starts coughing. I had a big headache, the surgeons didn’t say a word, which was weird because that surgeon usually says a lot. The med student also had asthma and said something was making her cough. I checked for a leak in my circuit, checked my numbers, everything was fine. I called for an anesthesia tech and they checked the caps. Turns out that the anesthesia tech the day before hadn’t screwed the cap back on tightly where you refill the stuff. The room was gassed.
MAC & Awareness

Minimum Alveolar Concentration
Alveolar concentration of a gas at 1 atm at steady-state concentration at which 50% of subjects do not respond to surgical incision

Important Points
• Remarkably consistent across species
• MAC mirrors the brain partial pressure of an agent
• MAC is a population average; not a true predictor of an individual’s response
• MAC is an ED50 concentration
• the ED95 is ±25% - so at 1.3 MAC, 95% of patients will not respond to incision
• MAC values are additive (e.g. 0.5 MAC isoflurane + 0.5 MAC N2O = 1 MAC)
• MAC is inversely related to anesthetic potency & therefore its lipid solubility

MAC of Inhaled Anesthetics

<table>
<thead>
<tr>
<th>Gas</th>
<th>Blood:Gas Partition Coefficient</th>
<th>MAC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halothane</td>
<td>2.4</td>
<td>0.75%</td>
</tr>
<tr>
<td>Enflurane</td>
<td>1.9</td>
<td>1.7%</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>1.4</td>
<td>1.2%</td>
</tr>
<tr>
<td>Sevoflurane</td>
<td>0.65</td>
<td>2.0%</td>
</tr>
<tr>
<td>N2O</td>
<td>0.47</td>
<td>104%</td>
</tr>
<tr>
<td>Desflurane</td>
<td>0.42</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

*MAC values for adults 36-49 years old

• MAC is an indicator of gas potency.
• The blood:gas partition coefficient is an indicator of solubility, which affects the rate of induction and emergence; it is NOT related to MAC.
• Oil:gas partition coefficient is an indicator of anesthetic potency

More MAC Definitions

MAC-Awake (a.k.a. MAC-Aware)
– The MAC necessary to prevent response to verbal/tactile stimulation.
– Volatiles: ~0.4 MAC; N2O: ~0.6 MAC

MAC-BAR
– The MAC necessary to “blunt the autonomic response” to a noxious stimulus
– ~1.6 MAC

MAC-EI
– The MAC necessary to prevent laryngeal response to “endotracheal intubation”
– ~1.3 MAC

Effect of Age on MAC

MAC is highest at 6 months old, then begins to decline
After age 40, MAC declines ~6% per decade
MAC for an 80 year old is about 0.75 that of a 40 year old

Factors that Increase MAC

• Drugs that increase central catecholamines:
  – MAOIs, TCAs
  – acute cocaine, amphetamine intoxication
  – Ephedrine
  – Levodopa
• Factors that increase metabolic demand in the brain
  • hyperthermia
  • Hypernatremia
  • Chronic EtOH abuse
• Genetic factors
  – Redheaded females may have a 19% increased MAC requirement compared to brunettes
• Young age
  • Highest MAC for infants is at 1-6 months old (except sevoflurane which has highest MAC in neonates age 0-30 days)
• Hyperthyroidism, obesity, anxiety,
Factors that Decrease MAC

- Drugs decreasing central catecholamines:
  - Reserpine, (-methyl)dopa
  - Chronic amphetamine abuse
- Other drugs:
  - Opioids, benzodiazepines, barbiturates, \( \beta \)-agonists (clonidine, dexmedetomidine), ketamine, lidocaine, lithium, verapamil, hydroxyzine.
- Acute EtOH intoxication
- Pregnancy (1/3 after 8-12 weeks, normal by 72h post-partum)
- Hypothermia (\( \approx \)50% per 10°C)
- Hypotension (MAP<40 in adults)
- Hypoxemia (\( P_{\text{O}_2} < 38 \text{ mm Hg} \))
- Hypercarbia (\( P_{\text{CO}_2} > 95 \text{ mm Hg} \))
- Hyponatremia
- Metabolic acidosis
- Anemia (Hct < 10%)
- Hypothyroidism

Factors that DO NOT Influence MAC

- Duration of anesthesia
- Hyper/hypocapnia
- Arterial blood pressure >50mmHg
- Sex
- Patient size

Awareness

- Very rare, estimated to be 1-2 per 1000 GA cases
- Higher incidence in pediatrics – up to 2.7% in kids over 6 years old
- Twice as likely to happen when neuromuscular blockade is used
- Most common sensation is hearing voices
- Mostly occurs during induction or emergence
- More common in high-risk surgeries where deep anesthesia may be dangerous to an unstable patient (e.g. trauma 11-45%, cardiac 1-1.5%, cesarean section 0.4%)
- Early counseling after an episode is very important (needed by 40-50%)
- Patient handout available at: www.asahq.org/patientEducation/Awarenessbrochure.pdf
- Dreaming can also occur and be confused for awareness if it is disturbing to the patient; dreaming is not related to anesthetic depth

Preventing Awareness

- Consider administering an amnestic premed
- Avoid or minimize muscle relaxants when able
- Choose potent inhalational agents rather than TIVA if possible -> use at least 0.5-0.7 MAC
- Monitor brain activity (ie BIS or SedLine) if using TIVA
- Consider different treatment for hypotension other than decreasing anesthetic concentration
- Redose IV anesthetic when delivery of inhalational agent is difficult (ie during long intubation or rigid bronchoscopy)

Signs of Light Anesthesia

- Increase in HR or BP by 20% above baseline
- Tearing
- Dilated pupils
- Coughing or bucking
- Patient movement
- Signs of consciousness on EEG monitor (Bispectral Index or Sedline)
- Sympathetic activation – sweating, tachycardia

BIS & Sedline

- Both use EEG monitoring and algorithms to produce numbers (0-100) relating to depth of anesthesia.
  - 65-85 = sedation
  - 30-65 = general anesthesia
  - <30 = too deep
- Both have been shown to be fairly good predictors of loss and regaining consciousness
- Interpatient variability exists
- Both have a roughly 2 min time lag
- It is possible to display the raw EEG in real time on either device, and interpret on your own.
Management

If you suspect your patient may be aware:

• Immediately deepen the anesthetic with fast-acting agents (e.g. propofol).
• Talk to the patient, reassure them that everything is OK (hearing is the last sense to be lost).
• Consider a benzodiazepine for amnesia.
• Talk to the patient after the case to assess if they had any awareness.
• Set up counseling if necessary.
• Contact Patient Services and Risk Management (potential lawsuit?)

References

**IV Anesthetic Agents**

**Mechanism of Action**

- It is widely believed that most IV anesthetics exert their sedative and hypnotic effects via interaction with GABA receptors.
- GABA is the primary inhibitory neurotransmitter in the CNS.
- Activation of receptor causes increased chloride conductance, and therefore hyperpolarization (promotion of inhibition).
- Other IV anesthetics exert effect via NMDA receptors (Ketamine) or alpha-2 receptors (Dexmedetomidine).
- Propofol and Barbiturates decrease the rate of dissociation of GABA and its receptor.
- Benzodiazepines increase the efficiency of GABA-receptor and chloride ion channel coupling.

---

**Induction Characteristics and Dosage Requirements for the Currently Available Sedative-Hypnotic Drugs**

<table>
<thead>
<tr>
<th>DRUG NAME</th>
<th>INDUCTION DOSE (mg/kg)</th>
<th>ONSET (sec)</th>
<th>DURATION (min)</th>
<th>EXCITATORY ACTIVITY*</th>
<th>PAIN ON INJECTION*</th>
<th>HEART RATE†</th>
<th>BLOOD PRESSURE†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiopental</td>
<td>3–6</td>
<td>&lt;30</td>
<td>5–10</td>
<td>0</td>
<td>++</td>
<td>↓</td>
<td>↑↓</td>
</tr>
<tr>
<td>Methohexital</td>
<td>1–3</td>
<td>&lt;30</td>
<td>5–10</td>
<td>0</td>
<td>++</td>
<td>↑↓</td>
<td>↑↓</td>
</tr>
<tr>
<td>Propofol</td>
<td>1.5–2.5</td>
<td>15–45</td>
<td>5–10</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>↑↑</td>
</tr>
<tr>
<td>Midazolam</td>
<td>0.2–0.4</td>
<td>30–90</td>
<td>10–30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Etomidate</td>
<td>0.2–0.3</td>
<td>70–120</td>
<td>10–30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ketamine</td>
<td>1–2</td>
<td>45–60</td>
<td>10–30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*0 = none; + = minimal; ++ = moderate; +++ = severe.
†↓ = decrease; ↑ = increase.

(Clinical Anesthesia 6th Edition; Barash, P.; Lippincott Williams and Wilkins; 2011)

**Pharmacokinetic Values for the Currently Available Intravenous Sedative-Hypnotic Drugs**

<table>
<thead>
<tr>
<th>DRUG NAME</th>
<th>DISTRIBUTION HALF-LIFE (min)</th>
<th>DISTRIBUTION VOLUME AT STEADY STATE (L/kg)</th>
<th>CLEARANCE (mL/kg/min)</th>
<th>ELIMINATION HALF-LIFE (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propofol</td>
<td>2–4</td>
<td>2.5</td>
<td>3.4</td>
<td>11</td>
</tr>
<tr>
<td>Methohexital</td>
<td>5–6</td>
<td>2.2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Propofol</td>
<td>2–4</td>
<td>2.1–10</td>
<td>4–23</td>
<td>1–2.5</td>
</tr>
<tr>
<td>Midazolam</td>
<td>7–15</td>
<td>1.1–1.7</td>
<td>4.4–11</td>
<td>1–2.4</td>
</tr>
<tr>
<td>Etomidate</td>
<td>10–15</td>
<td>0.2–1.7</td>
<td>0.5–0.5</td>
<td>28–54</td>
</tr>
<tr>
<td>Lorazepam</td>
<td>3–10</td>
<td>0.8–1.3</td>
<td>0.8–1.6</td>
<td>11–24</td>
</tr>
<tr>
<td>Diazepam</td>
<td>2–4</td>
<td>2.6–4.5</td>
<td>2–3.5</td>
<td>2–4</td>
</tr>
<tr>
<td>Ketamine</td>
<td>2–4</td>
<td>2</td>
<td>12</td>
<td>12–17</td>
</tr>
</tbody>
</table>

(Clinical Anesthesia 6th Edition; Barash, P.; Lippincott Williams and Wilkins; 2011)

**Pharmacodynamics**

- The principle pharmacologic effect of IV anesthetics is to produce increasing sedation and eventually hypnosis. They can be used to induce loss of consciousness at the beginning of an anesthetic or used as infusions to maintain general anesthesia.
- All hypnotics also affect other major organ systems:
  - They produce hypotension and cardiac depression (Etomidate causes the least cardiac depression).
  - Profound hemodynamic effects can be seen with hypovolemia as a higher drug concentration is achieved within the central compartment.
  - A large hemodynamic depressant effect can be seen in the elderly and those with pre-existing cardiovascular disease.
  - These patients often exhibit decreased dose requirement.

---

**Drug Induction Dose (mg/kg)**

<table>
<thead>
<tr>
<th>DRUG NAME</th>
<th>INDUCTION DOSE (mg/kg)</th>
<th>EFFECTS</th>
<th>PEARLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propofol</td>
<td>1.5–2.5</td>
<td>Decreases cerebral metabolic O2 requirements, central blood flow, intracranial pressure</td>
<td>- Decreases SVR, direct myocardial depressant effects in US-50% of patients.</td>
</tr>
<tr>
<td>Etomidate</td>
<td>0.2–0.3</td>
<td>Decreases cerebral metabolic O2 requirements, central blood flow, intracranial pressure</td>
<td>- Maintains hemodynamic stability (minimal cardiac depression).</td>
</tr>
<tr>
<td>Thiopental</td>
<td>3–5</td>
<td>Decreases cerebral metabolic O2 requirements, central blood flow, intracranial pressure</td>
<td>- Cardio-stimulating effects (negatively effects myocardial supply-demand).</td>
</tr>
<tr>
<td>Ketamine</td>
<td>1–2</td>
<td>Increases cerebral metabolic O2 requirements, central blood flow, intracranial pressure</td>
<td>- Analgesic effects.</td>
</tr>
</tbody>
</table>

(Clinical Pharmacology; Barash, P.; Lippincott Williams and Wilkins; 2011)
Propofol

- Produced in an egg lecithin emulation (egg yolk−not egg white−which is typically to the egg white protein) because of its high lipid solubility
- Pain on injection occurs in 24-47% of subjects; alleviated with IV lidocaine or administering the drug in a larger vein
- Induction dose 1.5-2.5 mg/kg
  - Children require higher doses (larger Vd and higher clearance)
  - Elderly require lower doses (smaller Vd and decreased clearance)
- Induction rate: 10-25 mcg/ml/min for sedation (depends on desired level of consciousness and infusion duration)
- Decreases CMRO2, CBF, ICP; CPP maintained because less decrease in SBP
- Induction dose 3-5 mg/kg in adults, 5-6 mg/kg in children, 6-8 mg/kg in infants
- Can precipitate in acidic solutions (DO NOT MIX with Rocuronium or LR)
- Highly alkaline (pH 9)
- Intra-arterial injection can cause intense vasoconstriction, thrombosis and tissue necrosis; treat with papaverine and lidocaine or regional anesthesia-induced sympathectomy and heparinization
- Unlikely to use at Stanford (no longer produced in US) but may use internationally
- Dose-dependent respiratory depression
- Decreases SVR (arterial and venous), direct myocardial depressant
- Anticonvulsant properties
- Decreases SVR (arterial and venous), direct myocardial depressant
- Dose-dependent respiratory depression
- Induction dose 1.5-2.5 mg/kg
- Premedication dose 0.1-0.2 mg/kg IV
  - Does not produce EEG burst suppression
- Decrease SVR and BP when used as induction dose
- Decreases CMRO2, CBF, ICP
  - Causes EEG burst suppression in larger doses (previously commonly used for neurosurgical procedures)
- Anticonvulsant activity
  - Exception: Methohexitol
- Decreases SVR, direct myocardial depressant
- Dose-dependent respiratory depression
- Unlikely to use at Stanford (no longer produced in US) but may use internationally
- Causes dose-dependent respiratory depression
- Decrease SVR and BP when used as induction dose
- Decreases CMRO2, CBF, ICP
  - Causes EEG burst suppression in larger doses (previously commonly used for neurosurgical procedures)
- Anticonvulsant activity
  - Exception: Methohexitol
- Decreases SVR, direct myocardial depressant
- Dose-dependent respiratory depression
- Unlikely to use at Stanford (no longer produced in US) but may use internationally
- Formulations support growth of bacteria, good sterile technique and labeling of expiration times (typically 12 hours) is critical
- Propofol infusion syndrome (PIS): Risk in critically ill patients receiving high dose propofol infusions
- Midazolam

- All benzodiazepines have anxiolytic, amnestic, sedative, hypnotic, anticonvulsant properties (but not analgesic)
- Premedication dose 0.04-0.08 mg/kg IV (typically 1-2 mg)
- Induction dose 0-1.0-2.0 mg/kg IV
- Decreases CMRO2, CBF, CPP
  - Does not produce EEG burst suppression
- Decrease SVR and BP when used as induction dose
- Causes dose-dependent respiratory depression
  - Exaggerated when combined with opioids and in patients with chronic respiratory disease
- Flumazenil is a specific antagonist
  - Very short acting
  - 45-90 minutes of action following 1-3 mg dose
  - May see re-sedation as benzodiazepine is eliminated more slowly compared to effects of flumazenil
- Myoclonus common on injection
- Induction dose 0.2-0.3 mg/kg
- Rapid onset due to high lipid solubility and large non-ionized fraction at physiologic pH
- Myoclonus common on injection
- Decreases CMRO2, CBF, ICP; CPP maintained because less decrease in SBP
- Anticonvulsant properties; but minimal effect on duration of ECT-induced seizure activity
- Maintains hemodynamic stability (even in the presence of pre-existing disease)
  - Does not induce histamine release
  - Inhibits adrenoceptoric synthetic function
  - Inhibition for 5-8 hours even after a single induction dose; more prominent with infusions
  - Increased incidence of PONV

- High incidence of pain on injection
- Induction dose 0.2-0.3 mg/kg
- Rapid onset due to high lipid solubility and large non-ionized fraction at physiologic pH
- Myoclonus common on injection
- Decreases CMRO2, CBF, ICP; CPP maintained because less decrease in SBP
- Anticonvulsant properties; but minimal effect on duration of ECT-induced seizure activity
- Maintains hemodynamic stability (even in the presence of pre-existing disease)
  - Does not induce histamine release
  - Inhibits adrenoceptoric synthetic function
  - Inhibition for 5-8 hours even after a single induction dose; more prominent with infusions
  - Increased incidence of PONV

- Produces a dissociative anesthetic state
  - Profound analgesia and amnesia despite maintenance of consciousness
  - High incidence of psychomimetic reactions (attenuated by co-administration of midazolam)
  - Induction dose 1-2 mg/kg
- NMDA antagonist (implications in prevention/treatment of chronic pain)
- Increases CMRO2, CBF, ICP
  - Contraindicated in neurological procedures
- Most likely to preserve airway reflexes among the IV anesthetics
- Minimal respiratory depression
- Cardio-depressant effects secondary to direct sympathetic stimulation
  - Can be unmasked in patients with increased sympathetic outflow
  - Negatively affects myocardial oxygen supply-demand ratio
- Intrinsically myocardial depressant, may be significant in severely ill patients with depleted catecholamine reserves
- Increases PVR
- Causes bronchodilation
- Causes increased oral secretions
- Useful for chronic pain patients (common dose for intra-operative management is 0.5-1 mg/kg prior to incision (after intubation, unless using for induction) and then 0.25 mg/kg each hour (infusion or bolus)
- Increases PVR
- Causes bronchodilation
- Causes increased oral secretions
- Useful for chronic pain patients (common dose for intra-operative management is 0.5-1 mg/kg prior to incision (after intubation, unless using for induction) and then 0.25 mg/kg each hour (infusion or bolus)

- Selective \( \alpha_2 \) adrenergic agonist (primarily central-acting)
- Hypnotic and analgesic
- Opioid-sparing effect and does not significantly depress respiratory drive
- Usually an infusion at a concentration of 4 mcg/ml
- Loading dose 0.5-1 mcg/kg over 10 min
- Infusion rate 0.4-1.2 mcg/kg/hr (ask your attending)
- Rapid onset and terminal half-life of 2hr
- Decrease dosage for patients with renal insufficiency or hepatic impairment
- Main side effects are bradycardia, heart block, hypotension
- Can be utilized for sedation during awake FOB intubations
It was my first week of anesthesia residency and my mentor asked me to hang some blood to transfuse. I reached up and removed the spike from the bag of fluid that was already hanging…I was immediately soaked by the open IV fluid bag. My mentor later told me that he knew that would happen, but let me do it anyway so that I would always remember to bring the bag down first. I haven’t forgotten.

I was in the preop area at the VA, and introduced myself to the patient as Dr. Taylor*. He quickly replied, "What was your name?", to which I said my first name, "Victoria". He looked at me amazed and said, "I can’t believe it. I have your name tattooed on my a**." I asked if he was willing to show me. As he rolled over, the words "your name" appeared on his left butt cheek.

*Names have been changed

It was the 4th week of CA-1 year, and I knew I was going to need 2 PIVs for a relatively bloody case. That morning I prepared the fluid warmer with a blood pump, ready to go once I got the 2nd PIV inside the OR. In pre-op, I placed a PIV on the RIGHT side, then brought him in to the OR, connected the monitors and started giving fentanyl and propofol through the stop cocks on the LEFT blood pump. No change in the patient or vital signs—my attending and I were puzzled. I came to realize that I was basically feeding meds into the fluid warmer (which had the capacity to absorb the meds without causing significant resistance or dripping onto the floor). Yeah, I remember my attending giving me a smile, shaking his head and saying, "Give me the blood pump and connect it over here." Regardless, the patient was induced and we played it off cool.

References

Rational IV Opioid Use

Basic Opioid Pharmacology
- Analgesia produced by mu (µ) opioid receptor agonism in the brain (periaqueductal gray matter) and spinal cord (substantia gelatinosa)
- Well-known side effect profile:
  - Sedation, respiratory depression
  - Itching, nausea, ileus, urinary retention
  - Bradycardia, hypotension
  - Miosis, chest wall rigidity
- Opioids are hemodynamically stable when given alone, but cause \( \downarrow \text{CO, SV, and BP} \) in combination with other anesthetics
- Reduces MAC of volatile anesthetics

Opioid Receptor Subtypes and Their Effects

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Clinical effect</th>
<th>Agonists</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Supraspinal (μ1), Respiratory depression (μ2), Physical dependence, Muscle rigidity</td>
<td>Morphine, Met-enkephalin, B-Endorphin</td>
</tr>
<tr>
<td>κ</td>
<td>Sedation, Spinal analgesia</td>
<td>Fentanyl</td>
</tr>
<tr>
<td>δ</td>
<td>Analgesia, Behavioral, Epileptogenic</td>
<td>Leu-enkephalin, B-Endorphin</td>
</tr>
<tr>
<td>σ</td>
<td>Dysphoria, Hallucinations</td>
<td>Pentazocine, Nalorphine, Ketamine</td>
</tr>
</tbody>
</table>

Opioids

Morphine
- Slow peak time (~80% effect at 15 minutes, but peak analgesic effect is at ~90 minutes)
- Active metabolite, morphine-6-glucuronide, has analgesic properties and is renally excreted (not clinically relevant unless patient has renal failure)
- Can cause histamine release

Hydromorphone (Dilaudid)
- “A rapid onset morphine” -> Peak effect in 5-10 minutes.
- About 8-fold more potent than morphine (i.e. 1 mg Dilaudid = 8 mg morphine)
- No active metabolites, no histamine release
- Common choice for post-op analgesia and PCA

Fentanyl
- Fast onset & short duration of action (peak effect at 3-5 minutes; effect site half-life ~30 minutes
- ~100-fold more potent than morphine
- Very cheap

Sufentanil
- Fast onset, but slightly slower than fentanyl
- 10-fold more potent than fentanyl (i.e. 5 mcg sufentanil = 50 mcg fentanyl)
- More rapid recovery than fentanyl
- Commonly used as infusion

Alfentanil
- Fastest onset time of all opioids (~90 seconds); pKa = 6.5, so it crosses the blood-brain barrier rapidly
- Also causes more N/V, chest wall rigidity, and respiratory depression
- Brief duration of action due to rapid redistribution

Remifentanil
- Peak effect time ~90 seconds
- Unique pharmacokinetics - metabolized by plasma esterases
- Short context-sensitive half-time after termination of infusion with predictable offset in ~5-10 minutes
Opioids

Meperidine (Demerol)
- Originally discovered as a local anesthetic (“pethidine”)
- Peak effect in 15 minutes, lasts 2-4 hours
- Active metabolite (normeperidine) lowers the seizure threshold; renally excreted
- Useful for treating shivering
- Anticholinergic side effects: tachycardia
- Avoid using with MAOIs; can cause CNS excitation (agitation, hyperpyrexia, rigidity) and/or CNS depression (hypotension, hypoventilation, coma)
- Causes histamine release
- Has a euphoric effect with less respiratory depression than other opioids

Rational Opioid Use

Note: All anesthesiologists (attendings & residents alike) have different theories and opinions on the optimal choice and dose of opioids in different situations. The strategies presented here are simply suggestions, something to get you thinking rationally about how and when you use opioids for analgesia. Discuss the merits of these strategies with your attending before or during each case, but do not take these suggestions as firm guidelines for how all anesthetics should be done!

With that disclaimer in mind, continue reading…

Strategies for Opioid Use

- For a standard GETA induction, use fentanyl to blunt the stimulation caused by DL and intubation
- For brief, intense stimulation (e.g. retrobulbar block, Mayfield head pins, rigid bronchoscopy), consider a bolus of short-acting opioid like remifentanil or alfentanil
- For intra-op analgesia:
  - Fentanyl is rapidly titratable, but requires frequent redosing; it may be more “forgiving” if overdosed
  - Morphine has a long onset time to peak effect, but gives prolonged analgesia during the case and into the post-op period
  - Hydromorphone is rapidly titratable (like fentanyl) with prolonged analgesia (like morphine)

Strategies for Opioid Use

- For ENT cases, consider an opioid infusion (e.g. remifentanil, alfentanil, sufentanil, or fentanyl):
  - Stable level of analgesia
  - Induced hypotension
  - “Narcotic wakeup” reduces bucking on ETT
  - Smooth transition to post-op analgesia
- For chronic opioid users (e.g. methadone, MS Contin, OxyContin, etc.), continue the patient’s chronic opioid dose intraoperatively PLUS expect higher opioid requirements for their acute pain;
  - Adjuncts may be helpful (tylenol, lidocaine, ketamine, gabapentin, etc)
  - Use morphine and meperidine cautiously in renal patients (renal excretion of active metabolites)

Strategies for Opioid Use

- Meperidine is usually reserved for treatment/prevention of postoperative shivering
- For post-op pain control (i.e. PACU):
  - Consider fentanyl (rapid onset, easily titratable, cheap, and the nurses are familiar with its use)
  - Consider hydromorphone (rapid onset, easily titratable, prolonged effect, nurses are familiar with its use, and it is a good transition to PCA)
  - If surgery is ambulatory and/or patient is tolerating POs, give Vicodin or Percocet
References

Intraoperative Hypotension & Hypertension

Determinants of Blood Pressure

Blood Pressure (BP)
- BP represents the force exerted by circulating blood on the walls of blood vessels.
- Determined by 1) cardiac output and 2) vascular tone (SVR)

Cardiac Output (CO)
- \( CO = HR \times SV \)

Heart Rate (HR)
- Dependent on the interplay between the sympathetic and parasympathetic nervous systems.
- In infants, SV is fixed, so CO is dependent on HR.
- In adults, SV plays a much more important role, particularly when increasing HR is not favorable (i.e. CAD)

Components of Blood Pressure

Systolic Blood Pressure (SBP)
- Highest arterial pressure in the cardiac cycle.
- Dicrotic notch = a small notch in the invasive arterial pressure curve that represents closure of the aortic valve, producing a brief period of retrograde flow.

Diastolic Blood Pressure (DBP)
- Lowest arterial pressure in the cardiac cycle

Mean Arterial Pressure (MAP)
- \[ MAP = \frac{2}{3} \text{DBP} + \frac{1}{3} \text{SBP}, \text{ or } (2 \times \text{DBP} + \text{SBP}) \div 3 \]

Components of Blood Pressure

Stroke Volume (SV)
- Dependent on 1) preload, 2) afterload, and 3) myocardial contractility
- Volume of blood in the ventricle at end-diastole (LVEDV)

Afterload
- Resistance to ejection of blood from the ventricle
- SVR accounts for 95% of the impedance to ejection
- \( SVR = 80(\text{MAP-CVP})/\text{CO} \)

Contractility
- The force and velocity of ventricular contraction when preload and afterload are held constant.
- Ejection fraction (EF) is one of the most clinically useful indices of contractility (normal left ventricle EF is ~60%).

Pulse Pressure
- \( PP = SBP - DBP \)
- Normal PP is ~40 mm Hg at rest, and up to ~100 mm Hg with strenuous exercise.
- Narrow PP (e.g. < 25 mm Hg) = may represent aortic stenosis, coarctation of the aorta, tension pneumothorax, myocardial failure, shock, or damping of the system.
- Wide PP (e.g. > 40 mm Hg) = aortic regurgitation, atherosclerotic vessels, PDA, high output state (e.g. thyrotoxicosis, AVM, pregnancy, anxiety)

Blood Pressure Measurement

Non-Invasive Blood Pressure (NIBP)
- Oscilometric BP determination: oscillations in pressure are detected through the cuff as it deflates.
- MAP is measured as the largest oscillation; it is the most accurate number produced by NIBP.
- SBP and DBP are calculated by proprietary algorithms in the machine.
- Readings may be affected by external pressure on cuff.

Invasive Arterial Blood Pressure (IABP)
- Most accurate method of measuring BP.
- If system is zeroed, leveled, and properly dampened, SBP, DBP, and MAP are very accurate.
Intraoperative Hypertension

- "Light" anesthesia
- Pain
- Chronic hypertension
- Illicit drug use (e.g. cocaine, amphetamines)
- Hypermetabolic state (e.g. MH, thyrotoxicosis, NMS)
- Elevated ICP (Cushing's triad: HTN, bradycardia, irregular respirations)
- Autonomic hyperreflexia (spinal cord lesion higher than T5 = severe; lower than T10 = mild)
- Endocrine disorders (e.g. pheochromocytoma, hyperaldosteronism)
- Hypervolemia
- Drug contamination - intentional (e.g. local anesthetic + Epi) or unintentional (e.g. "Roc-inhprine")
- Hypercarbia

Intraoperative Hypotension

- Hypovolemia: Blood loss, dehydration, diuresis, sepsis
  - Ensure: Adequate IV access, fluid replacement, cross match if necessary
- Drugs: Induction and volatile agents, opioids, anticholinesterases, local anesthetic toxicity, vancomycin, protamine, vasopressor/vasodilator infusion problem, syringe swap or drugs given by surgeon
  - Ensure: Volume loading, vaspressors, airway support, left lateral displacement during pregnancy
- Regional/Neuraxial Anesthesia: Vasodilation, bradycardia, respiratory failure, local anesthetic toxicity, high spinal
  - Ensure: Surgeon aware
- Cardiopulmonary Problems: Tension PTX, hemothorax, tamponade, embolism (gas, amniotic fluid, or thrombotic), sepsis, myocardial depression (from drugs, ischemia, electrolytes, trauma)

Treatment of Hypertension

- Temporize with fast-onset, short-acting drugs, but ultimately diagnose and treat the underlying cause.
- Pharmacologic Interventions:
  - Volatile anesthetics (cause vasodilation while deepening anesthetic)
  - Opioids (treat pain and deepen the anesthetic, histamine release causes hypotension)
  - Propofol (quickly sedates and vasodilates)
  - Beta-blockers (e.g. labetalol, esmolol- affects HR > BP)
  - Vasodilators (e.g. hydralazine- takes 20min for peak, NTG, SNP)

Treatment of Hypotension

- Temporize with fast-onset, short-acting drugs (e.g. ephedrine, phenylephrine), but ultimately diagnose and treat the underlying cause.
  - Turn down (sometimes turn off) the anesthetic
  - Call for help. Inform surgeons
- Volume
  - Reevaluate EBL; replace with crystalloid, colloid, or blood, as needed
  - Consider art line, CVP, PAC, or TEE
- Ventilation
  - Reduce PEEP to improve venous return
  - Decrease I:E ratio to shorten inspiratory time
  - Rule out PTX
- Metabolic
  - Treat acidosis and/or hypocalcemia

References

Neuromuscular Blocking Agents

Introduction

- Neuromuscular blocking agents (NMBA) are used to facilitate intubation and mechanical ventilation and improve operating conditions (e.g., laparotomy, orthopedic surgery).
- There are two categories of NMBA with distinct properties: A) depolarizing (succinylcholine) versus B) nondepolarizing (e.g., rocuronium, vecuronium, cisatracurium).
- Postoperative residual paralysis occurs frequently. Monitoring of neuromuscular blockade and pharmacological reversal are the standard of care.¹
- NMBA should be used judiciously as they carry their own risks. There are also many surgical- and patient-specific contraindications. Read your textbook chapter on NMBA several times during residency!

Depolarizing NMBA: Succinylcholine

- **Structure:** two ACh molecules joined by methyl groups
- **Mechanism of action:** ACh receptor agonist and prolonged muscle depolarization
- **Intubating Dose:** 1 – 1.5 mg/kg
- If you use a defasciculating dose of rocuronium (0.03 mg/kg), intubating dose of sux is higher (1.5 – 2 mg/kg)
- **Onset:** within 30-60 sec; duration ~10 min depending on dose (often used for rapid sequence induction and intubation)
- Diffuses away to extracellular fluid → then rapidly metabolized by pseudocholinesterase = plasma cholinesterase = butyrylcholinesterase)
- ~1:3000 individuals are homozygous for an abnormal plasma cholinesterase, and paralysis can last 3-8 hours. Consider checking twitches before giving nondepolarizing NMBA after sux.
- **Dibucaine** (local anesthetic) inhibits 80% normal pseudocholinesterase activity, but 20% abnormal pseudocholinesterase activity.

Contraindications to Sux

- Hyperkalemia: sux causes an increase in K⁺ of 0.5 mEq/L. Normokalemic renal failure is NOT a contraindication.
- Conditions with upregulated junctional and extrajunctional cholinergic receptors: using sux can result in hyperK⁺ arrest. This includes burn injury (after 24-48 hrs), muscular dystrophy, myotonias, prolonged immobility, crush injury, upper motor neuron insults from stroke and tumors.
- History of malignant hyperthermia and/or associated diseases.

Nondepolarizing NMBA

- **Mechanism of action:** competitive inhibition of nicotinic Ach receptor (nAChr) at the NMJ
- There are presynaptic nAChR which mobilize ACh containing vesicles. These presynaptic nAChR have a slightly different structure than postsynaptic nAChr.
- Some nondepolarizing agents block both pre- and postsynaptic nAChr.
- Two structural classes:
  1. **Benzylisoquinolinium = “urium”**
     - Cisatracurium, Doxacurium, Atracurium, Mivacurium, d-Tubocurarine
     - Some can cause histamine release (d-Tubocurarine >> Atracurium and Mivacurium)
  2. **Aminosteroid = “onium”**
     - Pancuronium, Vecuronium, Rocuronium, Pipecuronium
     - Vagolytic effects (Pancuronium > Rocuronium > Vecuronium)
- The most used nondepolarizing agents are the intermediate duration agents rocuronium, cisatracurium, and vecuronium.

Neuromuscular Transmission

- **Action potential depolarizes** motor neuron → Ca++ influx → vesicles fuse and release ACh → Ach across synaptic cleft and binds nicotinic receptors
- When ACh binds both α subunits, receptor ion channel opens with ion movement of Na+ and Ca++ in, K+ out

Additional Side Effects

- Fasciculations (can be decreased with defasciculating dose of rocuronium = 0.03 mg/kg 3 minutes prior to sux)
- Bradycardia (especially in children → often given with atropine).
- Tachycardia
- Anaphylaxis (approx. 1:5000 – 1:10,000)
- Myalgia
- Trismus
- Increased ICP, IOP. **N.B.** Benefits of securing the airway quickly often take precedence over small increases in ICP or IOP.
- Increased intragastric pressure and lower esophageal sphincter pressure.
**Nondepolarizing NMBA (cont.)**

- Intubating doses are 2 x ED95 (ED95 = average dose required to produce 95% suppression of the twitch height in 50% of population).
- A larger intubating dose speeds onset time but lengthens duration of block.
- **Priming dose:** to increase speed of onset, can give 10% of intubating dose 3–5 minutes prior to administering actual intubating dose (efficacy debatable).
- Wide interindividual response to nondepolarizing agents. Monitor Twitches and adjust doses accordingly.
- **Rocuronium can be used for rapid sequence inductions** when sux cannot, although roc is still slower. However, the increased 1 – 1.2mg/kg rocuronium necessary for RSI causes prolonged relaxation.
- Cisatracurium is degraded via Hoffman elimination. It is useful for patients with hepatic or renal dysfunction.

<table>
<thead>
<tr>
<th>Agent</th>
<th>ED95 (mg/kg)</th>
<th>Intubating Dose (mg/kg)</th>
<th>Onset (min)</th>
<th>Duration to 25% recovery (min)</th>
<th>Intra-op Maintenance</th>
<th>Metabolism/Excretion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succinylcholine</td>
<td>0.3</td>
<td>1</td>
<td>1-1.5</td>
<td>6-8</td>
<td>Rarely done</td>
<td>Plasma cholinesterase</td>
</tr>
<tr>
<td>Rocuronium</td>
<td>0.3</td>
<td>0.6</td>
<td>1.5-2</td>
<td>30-40</td>
<td>0.1-0.2 mg/kg pm</td>
<td>Liver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSI 1.2</td>
<td></td>
<td></td>
<td></td>
<td>Bile + Urine</td>
</tr>
<tr>
<td>Vecuronium</td>
<td>0.05</td>
<td>0.1-0.2</td>
<td>3-4</td>
<td>35-45</td>
<td>0.01-0.02 mg/kg pm</td>
<td>Liver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bile + Urine</td>
</tr>
<tr>
<td>Cisatracurium</td>
<td>0.05</td>
<td>0.15-0.2</td>
<td>5-7</td>
<td>35-45</td>
<td>0.3 mg/kg q20min</td>
<td>Hoffman elimination</td>
</tr>
</tbody>
</table>

Adopted from Table 20-2, Ch 20, Barash Clinical Anesthesia 6th edition

**NMBA Monitoring**

- The **train-of-four (TOF) ratio** is the common modality of monitoring nondepolarizing NMBA. The number of twitches and the ratio between the 4th and 1st twitch are measured with the TOF.
- In the OR, we often monitor twitch height and twitch height with sight or feel – which is not nearly as accurate as mechanomyography or accelerometry.
- A patient with “four strong twitches” can still misleadingly have significant weakness.
- A TOF of 0.9 (when comparing 4th to 1st twitch) is considered fully strong. Similarly, 5 seconds of **sustained tetanus at 50-100 Hz** indicates full recovery.
- Surgical relaxation can be achieved when the patient has 2-3 twitches though this depends on the surgical site and the nerve being monitored. Do not administer NMBA with the goal to achieve past zero twitching.

**Variability in NMBA Monitoring**

- Variability in muscle blockade (most resistant -> most sensitive): vocal cords > diaphragm > corrugator supercilii > abdominal muscles > adductor pollicis > pharyngeal muscles
- N.B. pharyngeal muscles are one of the last muscle groups to recover. Inadequate reversal leads to airway obstruction and aspiration. It also causes atelectasis and decreased pulmonary reserve.
- If placing electrodes on the face, you may stimulate facial muscles directly and may be fooled.

**Time course after Rocuronium (0.6 mg/kg) at different muscles**

- CS = corrugator supercilii (eyebrow)
- Abd = Abdomen
- OG = orbicularis oculi (eyelid)
- GH = geniohyoid (upper airway)
- AP = adductor pollicis (thumb)

**Depolarizing vs Nondepolarizing NMBA Monitoring**

An aside about sux:

Phase I block is typical for a single bolus of sux.

- Sux can cause a Phase II block at high or repeated doses and with prolonged infusions.

N.B. Neostigmine will potentiate a phase I block but will reverse a phase II block if there is a low enough concentration of sux left.

**Nondepolarizing NMBA Reversal**

- Use acetylcholinesterase inhibitors as “reversal agents”: less acetylcholinesterase working=>more Ach in NMJ=>stronger muscle firing.
- Reversal should not be given until spontaneous recovery has started. Anticholinesterases can paradoxically slow recovery if given too early. Many authors advocate waiting until 4 twitches are visible before giving reversal.
- Acetylcholinesterase inhibitors can cause vagal side effects (eg. bradycardia, GI stimulation, bronchospasm) due to increasing Ach activity at parasympathetic muscarinic receptors. Always administer with anticholinergics.
- Neostigmine with glycopyrrolate is most commonly used in the OR.
- - 40-50 mcg/kg of neostigmine is appropriate for most instances.
- - There is a **ceiling effect**. Do not give >70mcg/kg of neostigmine.
- - If recovery is seems complete (4 equal twitches), 15-20mcg/kg of neostigmine is probably sufficient (attendings will have differing opinions).
- - Dose of glycopyrrolate is 20% of the neostigmine dose (eg. 3mg neostigmine with 0.6mg glyco). Adjust glycopyrrolate dose as needed if patient is already particularly tachycardic.
Nondepolarizing NMBA Reversal

- Anticholinesterase inhibitors:
  - Neostigmine, Pyridostigmine, Edrophonium: do NOT cross BBB
  - Physostigmine: crosses BBB, can treat central anticholinergic syndrome/atropine toxicity

- Pair acetylcholinesterase inhibitor and anticholinergic based on speed of onset:
  - Edrophonium (rapid) w/ Atropine
  - Neostigmine (intermediate) w/ Glycopyrrolate
  - Pyridostigmine (slow) w/ Glycopyrrolate


Sugammadex

- Reverses neuromuscular blockade induced by rocuronium or vecuronium.
- 2 and 5 mL vials in a concentration of 100 mg/mL.
- Examples of indications to use sugammadex:
  - "cannot intubate, cannot ventilate"
  - Failure to intubate ventilation without airway protection is contra-indicated e.g. the full stomach.
  - Deep neuromuscular blockade is present that cannot be reversed with neostigmine
  - Inadequately reversed with neostigmine.
  - For surgery during pregnancy it may be preferable to use sugammadex rather than neostigmine as sugammadex does not cross the placenta.

Sugammadex (Cont.)

- Per the Committee on Quality, Efficiency and Patient Satisfaction (QEP) in our department:

<table>
<thead>
<tr>
<th>Recommended Dosages</th>
<th>Indication</th>
<th>Dose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution:</td>
<td>Open globe</td>
<td>16 mg/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cannot intubate</td>
<td>4 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Recovery has reached</td>
<td>4 mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard reversal:</td>
<td>(1-2 twitches in TOF)</td>
<td>2 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

- Patients using hormonal contraceptives must use an additional, non-hormonal method of contraception for the next 7 days.
- Not recommended for patients with severe renal insufficiency (including dialysis).
- APTT and PT will be prolonged by ~ 25% for up to 60 minutes.
- Do not mix with ondansetron, verapamil, and ranitidine.
- Anaphylaxis reported in 0.3% of healthy volunteers.

Intra-op Discussion Topics

- How do you induce a patient with full stomach and open globe?
- Can you use sux with increased ICP?
- What degree of immobility can cause hyperkalemia with sux?
- Can you use rocuronium for a renal transplant?
- Does reversal cause PONV?
- You just gave reversal and there is a lap in the abdomen. How do you paralyze the patient?
- Why is repeated sux doses associated with bradycardia?
- Does a defasciculating dose of roc correspond to decreased myalgia in the setting of using sux?

*SPECIAL CASES*

- Diseases SENSITIVE to Sux:
  - SLE, myositises
- Diseases RESISTANT to nondepolarizing NMBA:
  - Burns, Spinal cord injury, CVA, Prolonged immobility, Multiple sclerosis, cerebral palsy, tetanus/botulism
- Diseases SENSITIVE to nondepolarizing NMBA:
  - Myasthenia gravis (fewer AChR), Lambert-Eaton Syndrome (less ACh release), amyotrophic lateral sclerosis, SLE, myositises, Guillain-Barre, muscular dystrophy (at least Duchenne), +/- myotonia

- Factors ENHANCING block by NMBA:
  - Volatile anesthetics, aminoglycosides, tetracycline, clinda, Mg (watch on OB), IV local anesthetics, CCBs, Lasix, Dantrolene, Lithium, anticonvulsants, sux, hypokalemia, hyperthermia, ketamine
- Common surgeries to avoid NMBA
  - Axillary node dissection, ENT cases near nerves, neuromonitoring

References

For a while, one of the surgery residents referred to me as Superman. Not because of anything good, but because I woke his patient up and he emerged a little goofy. He insisted on keeping his arms stretched perfectly straight out in front of him, and despite many attempts to get him to relax, he wouldn’t put them down. We sat the head of the bed up, thinking that might help, but it just made it more obvious to everyone we drove past on the way to the PACU, with this old guy holding his Superman pose.
Difficult Airway Algorithm

A difficult airway is a clinical situation wherein a conventionally trained anesthesiologist has difficulty with face mask ventilation, tracheal intubation, or both.

A difficult airway arises from a complex interaction between patient specific factors, the clinical environment, and the skills of the anesthesiologist.

Be Prepared

Ventilation is arguably the most important job of the anesthesiologist.

Difficult mask ventilation is more of a concern than difficult intubation. If you can mask, you have all day to figure out how to intubate.

Preparation is key – Do a thorough airway exam. Ensure that the equipment you want is available. Take time to position the patient correctly (look at the patient from the side). Poor positioning can make an easy airway very difficult.

VS

STEP 1

Assess the likelihood of airway management problems:

A) **Predictors of Difficult / Impossible Face Mask Ventilation**

   ≥ 3 of the following risk factors

   **Difficult Mask Ventilation:**
   - Mallampati III or IV
   - Mandibular protrusion decreased
   - Beard
   - Obesity (BMI > 30 kg/m²)
   - Age >57-58
   - Teeth (Lack of)
   - Snoring

   **Impossible Mask Ventilation:**
   - “MaMaBOATS”
   - Mallampati III or IV
   - Mandibular protrusion decreased
   - Beard
   - Obesity (BMI > 30 kg/m²)
   - Age >57-58
   - Teeth (Lack of)
   - Snoring
   - OSA (mod-to-severe; on CPAP/BiPAP, or hx upper airway surgery)
   - Radiation changes (Neck)

   And always… History of prior difficulty

STEP 1

B) **Predictors of Difficult Intubation**

   - History of prior difficulty
   - Mallampati III-IV
   - Thyromental distance: <3 finger breadths (6cm)
   - Long incisors
   - Interincisor distance (small mouth opening) <3 cm
   - Prominent “overbite”
   - Decreased TMJ mobility: inability to bring mandibular incisors anterior to maxillary incisors
   - Neck range of motion: can’t touch chin to chest or extend neck (c-collar)
   - Short, thick neck
   - Underlying pathology (e.g. laryngeal/tracheal stenosis, epiglottitis, tumors)
   - Highly arched or very narrow palate
   - Decreased submandibular compliance (stiff, indurated, occupied by mass)
STEP 1

Mallampati Score Assessment

C) Difficulty with patient cooperation
   - Age
   - Mental capacity
   - Level of consciousness

D) Difficulty with tracheostomy
   - Obesity
   - Facial hair
   - Prior ENT surgery
   - Prior radiation to neck
   - Goiter

STEP 2

Actively pursue opportunities to deliver supplemental O₂ throughout the process of difficult airway management:
- Face mask
- LMA
- FOB swivel adaptor ETT connector
- Patil-Syracuse mask (mask with fiberoptic port)
- FOB side port
- Rigid bronchoscope side port
- Nasal cannula (apneic oxygenation during intubation attempt)
- Jet ventilation – usually very low on the list

*FOB = Fiberoptic bronchoscope

STEP 3

Consider the relative merits and feasibility of basic management choices:

A) Awake intubation

B) Non-invasive technique for initial approach to intubation

C) Video-assisted laryngoscopy as an initial approach to intubation

D) Preservation of spontaneous ventilation

vs.

Intubation attempt after induction of GA

Invasive technique for initial approach to intubation

STEP 4

Develop primary and alternative strategies:
Algorithm A: Awake Techniques

- Awake FOI
- Awake DL
- Awake video-laryngoscopy

Algorithm B: Intubation After Induction of GA

- Awake trach
- Cricothyroidotomy
- Mask ventilation
- Supraglottic airway (LMA, intubating LMA)
- Local anesthetic/Regional anesthesia with spontaneous ventilation

*If you used Rocuronium or Vecuronium you will need to give 16mg/kg of sugammadex for the patient to spontaneously breathe again.

*Remember to apply some method of apneic oxygenation

STEP 4

Algorithm B: Intubation After Induction of GA
**Algorithm B**

**Non-Emergent Pathway**
- CALL FOR HELP
- Mask ventilate with cricoid pressure
- Ensure optimal positioning
- Re-attempt DL with different blade (Don’t try same thing twice)
- Consider alternative techniques to secure airway
  - Gum elastic Bougie
  - Supraglottic device: LMA or intubating LMA
  - Video laryngoscope
  - Light wand
  - Fiberoptic intubation
  - Retrograde intubation

**Emergent Pathway**
- “Can’t intubate, can’t ventilate”
- CALL FOR HELP
- Emergency Non-Invasive Airway Ventilation
  - Supraglottic airway: LMA, iLMA (intubating LMA)
  - Rigid bronchoscopy
  - Combitube
- Emergency Invasive Airway Ventilation
  - Cricothyroidotomy
  - Surgical tracheostomy
  - Transtracheal Jet Ventilation

---

**The Vortex Approach**

Remember to think ahead when dealing with a difficult airway. If you can't mask and intubation attempts failed. Call for help and cricothyrotomy kit or anything else while you get ready to place an LMA.

**Basics of Airway Management**

**Oral Airway**
- Cormack Lehane Laryngoscopy Views

**Nasal Airway**

*Note a 3a view is when the epiglottis is lifted off the pharynx – Can still use bougie

**Airway Axis: “Sniffing” Position**

Sniffing position = flexion at C7 and extension C5/6

*Just because they are ‘ramped’ and tragus is aligned with sternum does not mean they will always be in good position. Make sure the neck can still be extended and they are still in sniffing position.

Ramp obese patients until tragus is aligned with sternum

**Head elevation helps to align PA & LA before DL**

**Pearls**

- PREPARE
- CALL FOR HELP
- Always take the time to pre-oxygenate (de-nitrogenate) – expired O2 >80%
  - A pre-oxygenated patient can be apneic for 8-10 minutes until desaturation occurs
    - For average adult O2 consumption ~250cc/min. FRC is ~ 2000cc. 2000/250 = 8 minutes.
- The first attempt at DL is the best attempt
- Move to other airway options after 2 attempts at DL (More DL’s = more edema, blood, etc)
- Know airway anatomy
- Know pharmacology of anesthetic agents
The first time I had a patient with HIV, I was really nervous about putting in the IV. When I met him in preop, I was relieved that he had really great veins, and I knew he would be really easy. However, I kept missing IV after IV. After the third failed attempt, I finally paged my attending to come over. When he put on the tourniquet, I suddenly realized that that's what I had neglected to do in my previous attempts!

5 minutes after manipulating an NGT that the surgeon insisted wasn't in the stomach (they always say this) when I knew it was because I was getting gastric contents (you always say this), the surgeon complains about a periodic whiff of a foul odor. We all started to notice it. I explained it was probably the gastric contents that leaked out when I was fiddling with the NGT. By the end of the 10 hour case, we pretty much all had some kind of pediatric face mask scent on our masks and everyone that came into our room complained of the smell out in the hall. Then off the came drapes and the horrible truth stared us in the face: The lower body bair hugger was making jerky out of a code brown so massive that it completely filled the void between the patient's legs.

First week of CA1 year making my first sufentanil infusion. I have my 250mcg vial of sufentanil on the anesthesia cart. I get a 50cc syringe and attached one of the pink 19 gauge needles to draw up some saline from a 1 liter bag. I gently insert the needle into the port but I get a little resistance so I reposition the needle and still have some resistance. This time I decide to just push a little harder and then bam! Out pops the needle from the side of the port right into my thumb. My arm reflexively pulls back and then I knock the sufentanil vial off the cart and it shatters on the ground. I then grab some 4x4’s for my thumb and collect the glass shards off the floor and put them into a kidney basin. I then proceed on the walk of shame to pharmacy for a bloody them and basin full of glass to explain what happened and promise them I wasn't stealing sufentanil.
**Fluid Management**

**Evaluation of Intravascular Volume**

**HPI**
- Hypovolemia: vomiting, diarrhea, fever, sepsis, trauma
- Hypervolemia: weight gain, edema, acute renal failure, ascites

**Physical Exam**
- Hypovolemia: skin turgor, thready pulse, dry mucous membranes, tachycardia, orthostasis, decreased UOP
- Hypervolemia: pitting edema, rales, wheezing, elevated JVP

**Labs/Studies**
- Hypovolemia: rising Hct, contraction alkalosis then metabolic acidosis, Ur specific gravity > 1.010, Urine Na < 10, Urine Osm > 450, hypernatremia, BUN:Cr > 10:1
- Hypervolemia: increased pulm vascular markings on CXR

**Intraoperative Intravascular Assessment**

**Monitor trends and compare multiple modalities to confirm clinical impressions**

**Vitals**
- HR and BP: consider positive pressure ventilation and anesthetics which cause state of relative hypovolemia
- Pulse Oximetry: waveform changes from baseline (assuming patient normothermic and not in shock)

**Foley Catheter**
- UOP: consider that ADH levels may be increased due to stress response (less reliable measure of volume status)
- Serial ABGs to follow pH, Hct, electrolytes
- Pulse Pressure Variation to assess volume responsiveness
  - Requires sinus rhythm & positive pressure ventilation
- Commonly used when blood loss, fluid shifts, or prolonged OR time anticipated

**Arterial Line**
- Serial ABGs to follow pH, Hct, electrolytes
- Pulse Oximetry: waveform changes from baseline (assuming patient normothermic and not in shock)
- 

**Evaluation of Intravascular Volume**

**TTE (The RUSH Exam)**
- Can be used in any setting (ICU, Preop, Intraop, PACU, etc.)
- Valuable in narrowing differential of hemodynamic instability
- Hypovolemia: Hypercontractile heart, small chamber size, flat IVC, flat jugular veins
- Hypervolemia: Distended IVC, distended jugular veins
  - Cardiogenic shock: hypocontractile, dilated heart

**Body Fluid Compartments**

<table>
<thead>
<tr>
<th></th>
<th>Fluid as % of TBW (%)</th>
<th>Fluid as % of body weight (%)</th>
<th>Volume, in 70 kg male (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular</td>
<td>67</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Extracellular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Interstitial</td>
<td>25</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>- Intravascular</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>60%</td>
<td>42 L</td>
</tr>
</tbody>
</table>

TBW = Total Body Water

**Q:** What is the intravascular volume of a 90 kg male?

**A:** 90 kg x 7% = 6.3 L
Physiologic Regulation of Extracellular Fluid Volume

Aldosterone
- Enhances sodium reabsorption
- Increases intravascular volume

Antidiuretic Hormone/Vasopressin
- Enhances water reabsorption

Atrial Natriuretic Peptide
- Enhances sodium and water excretion

Crystalloids

<table>
<thead>
<tr>
<th>Osm (mOsm/L)</th>
<th>Na⁺ (mEq/L)</th>
<th>Cl⁻ (mEq/L)</th>
<th>K⁺ (mEq/L)</th>
<th>Ca²⁺ (mEq/L)</th>
<th>Buffer (mEq/L)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>308</td>
<td>154</td>
<td>154</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LR</td>
<td>273</td>
<td>130</td>
<td>109</td>
<td>4</td>
<td>3</td>
<td>28 (lactate)</td>
</tr>
<tr>
<td>Normosol*</td>
<td>294</td>
<td>140</td>
<td>98</td>
<td>5</td>
<td>0</td>
<td>27 (acetate)</td>
</tr>
</tbody>
</table>

*Normosol used almost exclusively in Cardiac surgery

Advantages Disadvantages

NS
- Preferred for diluting pRBCs
- Preferred in brain injury
- In large volumes produces hyperchloremic metabolic acidosis
- Hyperchloremia → low GFR
- Watch K⁺ in renal patients
- Ca²⁺ may cause clotting with pRBCs

LR
- More physiologic
- Lactate is converted to HCO₃⁻ by liver

Colloids

Albumin (5% and 25%)
- Derived from pooled donated blood after cold ethanol extraction and ultra-filtration; heat-treated (60 degree C x 10 hrs)
- Use 5% for hypovolemia; 25% for hypovolemia in patients with restricted fluid and Na intake
- Minimal risk for viral infection (hepatitis or HIV); theoretical risk of prion transmission
- Expensive, occasional shortages

Hetastarch (6% hydroxyethyl starch, HES)
- RARELY used
- Hespan (in NS) and Hextend (in LR) solutions
- Solution of highly branched glucose chains (average MW 450 kD)
- Degraded by amylase, eliminated by kidney
- Intravascular t₁/₂ = 25.5 hrs; tissue t₁/₂ = 10-15 days
- Maximum Dose: 15-20 ml/kg/day
- Side effects:
  - Can increase PTT (via factor VIII/VWF inhibition) and clotting times
  - Anaphylactoid reactions with wheezing and urticaria may occur
  - May interfere with platelet function
  - Contraindications: coagulopathy, heart failure, renal failure

Crystalloid or Colloid?

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystalloid</td>
<td></td>
</tr>
<tr>
<td>- Lower cost</td>
<td>- Requires more volume for the same hemodynamic effect</td>
</tr>
<tr>
<td>- Readily available</td>
<td>- Short IV t₁/₂ (20-30 min)</td>
</tr>
<tr>
<td>- Maintains plasma oncotic pressure</td>
<td>- Dilutes plasma proteins in peripheral/pulmonary edema</td>
</tr>
<tr>
<td>- Less cerebral edema (in healthy brain tissue)</td>
<td>- May cause coagulopathy</td>
</tr>
<tr>
<td>- Less intestinal edema</td>
<td></td>
</tr>
</tbody>
</table>

Colloid

- Restores IV volume and HD with less volume, less time
- Longer IV t₁/₂
- Maintains plasma oncotic pressure
- Less cerebral edema (in healthy brain tissue)
- Expensive
- Coagulopathy (dextran > HES)
- Peripheral/pulmonary edema
- May cause cerebral edema (in areas of injured brain)

“Classical” Fluid Management

Maintenance
- “4-2-1 Rule” = 4 ml/kg/hr for the 1st 10 kg, 2 ml/kg/hr for the next 10-20 kg, and 1 ml/kg/hr for each additional kg above 20 kg

Preexisting Fluid Deficits
- Multiply maintenance requirement by # of hours NPO.
- Give 1/2 over 1st hour, 1/4 over 2nd hour, and 1/4 over 3rd hour
- Patients no longer undergo bowel preparation, so deficit decreased

Ongoing Losses

Evaporative and Intestinal Losses (capillary leak)
- Minimal tissue trauma (e.g. hernia repair) = 0.2 ml/kg/hr
- Moderate tissue trauma (e.g. cholecystectomy) = 2.4 ml/kg/hr
- Severe tissue trauma (e.g. bowel resection) = 4-8 ml/kg/hr

Blood Loss
- EBL = (suction canister - irrigation) + “laps” (100-150 ml each) + 4x4 sponges (10 ml each) + field estimate (very approximate estimation)
- Replace with pRBCs, colloid, or crystalloid

Utine Output: Be aware of losses from increased urine output (diuretics, etc.)

Caveat: This is a general guide to help consider sources of volume loss and replacement, by no means the rule and not data driven as limited data exist
Suggestions for Fluid Management

Tailor management to patient, surgery, and clinical scenario

Use a balanced approach

- Typically start with NS or LR
- Consider switch to LR, except in neuro cases (because of decreased osmolality) or patients with hyperkalemia, or ongoing blood transfusions
- Consider colloid for persistent hypotension despite adequate crystalloid administration

- Type and Cross for pRBC and other blood products prior to surgery if anticipating significant blood loss (i.e. trauma, coagulopathy)
  - Consider that rapid volume resuscitation may worsen coagulopathy, in general if giving >2 units pRBCs, have FFP available as well

Burns

- Increased evaporative losses
- H₂O, electrolytes, and protein shift from normal to burned tissue causing intravascular hypovolemia
- Volume to infuse is calculated by the Parkland Formula:
  - Volume = %BSA x 4 ml/kg x kg
  - Give 1/2 over the 1st 8 hours
  - Give 1/2 over the next 18 hours
  - Replace with LR
  - %BSA is determined by the “Rule of Nines”

Intraoperative Oliguria

Pre-renal (decreased renal perfusion)

- Hypovolemia
- Decreased CO (LV dysfunction, valvular disease)
- Decreased MAP
- Perfusion is compromised with increased intra-abdominal pressure (i.e. laparoscopy or abdominal compartment syndrome)

Post-renal (post-renal obstruction)

- Foley kinked, clogged, displaced, or disconnected
- Surgical manipulation of kidneys, ureters, bladder, or urethra

Renal

- Neuroendocrine response to surgery (i.e. activation of renin-angiotensin-aldosterone system with increased ADH), is age dependent
- Baroreceptor response to PPV also activates neuroendocrine response

Treatments

1. Relieve obstruction: check Foley; consider IV dyes (e.g. indigo carmine, methylene blue) to check for patency of ureters (i.e. Urology cases)
2. Increase renal perfusion: fluids (bolus vs increased maintenance rate), vasopressors/inotropes, or furosemide

Fluid Management Words of Wisdom:

- When emptying urine from Foley catheter, do not stare into the spout when releasing the clamp
- The proper way to remove gloves:
  1) Remove left glove into palm of right hand
  2) Using left thumb, peel right glove off right hand starting at the wrist wrapping left glove into right glove
  3) Create slingshot by stretching right glove between left thumb and right fingers
  4) Shoot wherever (preferably in direction of Urology surgeon)
- Never spike a bag of fluid that is already hanging on an IV pole, take it down to avoid giving yourself an NS bath

Liberal vs. Restrictive Management

Consequences of Volume Overload

- Increased mortality and length of ICU/hospital stay
- Increased myocardial morbidity
- Increased pulmonary, periorbital, and gut edema
- Decreased hematocrit and albumin
- Worsened wound healing/ increased anastomosis dehiscence due to edema

Suggestions for Rational Fluid Management

- Use good clinical judgment
- Tailor management to patient, surgery, and clinical picture
- Use balanced fluid therapy: use crystalloid for maintenance, consider use of colloid as discussed
- Consider conservative replacement of interstitial losses or UOP unless VS unstable

References

Type and Screen/Crossmatch

Type and Screen (takes 30-120 min, lasts 72 hr)
- ABO-Rh typing
  - Recipient RBCs tested with anti-A, B, and Rh antibodies
- Antibody screen
  - Recipient serum + type O RBCs for presence of A or B antibodies - no agglutination = negative screen
  - If antibody screen is positive: the serum is tested further

Type and Crossmatch (if T&S negative takes 30-60 min)
- Immediate phase: recipient serum + donor cells test for recipient Ab to donor (5 minutes)
- Incubation phase: incubate products from first test to look for incomplete recipient Ab to donor (i.e., Rh system)
- Indirect Antiglobulin test: antiglobulin serum to products of first two tests to look for incomplete recipient Ab to Rh, Kell, Duffy, and Kidd

Packed Red Blood Cells

Definition, Use, & Storage
- Single donor; volume 250-300 ml with Hct ~70%
  - When charting, document 250ml per unit to make it easier to keep track of numbers, especially when doing a lot of transfusing
- 1 unit pRBCs ↑ adult Hgb ~1 g/dl or Hct ~3%
- 10 ml/kg PRBC ↑ Hct 10%
- Solutions not compatible with pRBC:
  - LR (theoretical clot formation due to calcium)
  - D5W, hypotonic solutions (RBC hemolysis)
  - Always run in with bag of NS on blood pump
- Stored at 4°C in CPD (lasts 21 days), CPDA (lasts 35 days), or Adsol (lasts 42 days)
- CPDA:
  - Citrate (anticoagulant) - also binds iCa
  - Phosphate (buffer)
  - Dextrose (energy source)
  - Adenosine (precursor to ATP synthesis)

Indications (ASA Guidelines)
1. Hgb < 6 in young, healthy patients
2. Usually unnecessary when Hgb >10
3. At Hgb 6-10 g/dl, the decision to transfuse is based on:
   - Ongoing indications of organ ischemia
   - Potential for ongoing blood loss
   - Volume status
   - Risk factors for complications of inadequate O2
   - Example: myocardial ischemia

Platelets

Definition, Use, & Storage
- Platelet Concentrate (PC)
  - Platelets from one donated unit, vol = 50-70 ml; ↑ plt ~5000-10,000
  - "6-pack" = 6 pooled PCs; rarely used anymore
- Apheresis Unit
  - Platelets from a single donor; vol = 200-400 ml; ↑ plt ~50,000
  - Again, document as 250ml, not exact number written on unit
- Can give ABO-incompatible platelets, Rh tested only
- Stored at room temperature for ≤5 days.
- Hang separately (on blood pump with NS) – not through fluid warmer, Level 1, or Belmont

Indications (ASA Guidelines)
1. Rarely when plt > 100,000
2. Usually when plt < 50,000 (spontaneous bleed at < 20K)
3. When plt 50-100,000, based on risk of bleeding
4. With platelet dysfunction (e.g., CPB, plt inhibitors, renal dysfunction)

Fresh Frozen Plasma

Definition, Use, & Storage
- Fluid portion from whole blood
- Contains all coagulation factors (except platelets)
- 1 unit increases clotting factors 2-3%
- Use ABO-compatible; Rh-incompatible is OK
- Stored frozen; takes 30 min to thaw; use within 24 hrs of thawing

Indications (ASA Guidelines)
1. Correction of excessive microvascular bleeding with INR > 2
2. During massive transfusion (before lab results available)
3. Urgent reversal of warfarin (or can use Prothrombin Complex Concentrate)
4. Correction of known factor deficiency, when specific factor concentrates are unavailable
5. Heparin resistance (i.e., antithrombin III deficiency) in patients requiring heparinization
Cryoprecipitate

Definition, Use, & Storage
- Fraction of plasma that precipitates when FFP is thawed
- Contains Factors VIII, XIII, I (fibrinogen), and vWF
- 1 unit contains ~5X more fibrinogen than 1 unit FFP
- Use within 4-6 hours after thawed if you want to replace Factor VIII

Indications (ASA Guidelines)
1. Rarely when fibrinogen >150 mg/dl
2. When fibrinogen <100 mg/dl with microvascular bleeding
3. During massive transfusion when fibrinogen level not available
4. Bleeding patients with von Willebrand Disease
5. Congenital fibrinogen deficiency

Ordering Products
- Consider special needs of the patient
  - Special populations include: Cancer patients, BMT recipients, pregnant patients, solid organ transplant patients, those at risk of volume overload, patients with immunodeficiencies
- Examples:
  - CMV tested, Irradiated, leukocyte reduced, washed, fresh, volume reduced
- If you anticipate the patient may require a transfusion, ask them if they will accept blood products during your pre-op discussion
  - If patients refuse transfusion they must sign a special form before going to the OR

Massive Transfusion

Complications, cont

3. Citrate Toxicity
- Citrate is in CPDA storage solution as a Ca²⁺ chelator
- Massive transfusion can cause an acute hypocalcemia
- Binds magnesium also causing hypomagnesemia

4. Acid-Base Abnormalities
- At 21 days, stored blood has pH <7.0, due mostly to CO₂ production, which can be rapidly eliminated with respiration
- Acidosis more commonly occurs due to tissue perfusion

5. Hyperkalemia
- K⁺ moves out of pRBCs during storage
- If EKG changes occur, stop transfusion and treat hyperkalemia

6. Impaired O₂-Carrying Capacity
- 2,3-DPG decreases in stored blood, causing a left-shifted O₂-Hb dissociation curve

Equations

Arterial O₂ Content
\[ C_{O2} = O_2-Hb + \text{Dissolved } O_2 \]
\[ = (Hb \times 1.36 \times \frac{S_aO_2}{100}) + (P_{O2} \times 0.003) \]
\[ = (15 \times 1.36 \times 100\%) + (100 \times 0.003) \]
\[ = 20 \text{ cc } O_2/dl \]

Allowable Blood Loss
\[ \text{ABL} = \left[ \text{Hct (start)} - \text{Hct (allowed)} \right] \times \text{EBV} \]
\[ \text{Hct (start)} \]

Volume to Transfuse
\[ \text{Volume} = \left[ \text{Hct (desired)} - \text{Hct (current)} \right] \times \text{EBV} \]
\[ \text{Hct (transfused blood)} \]

Massive Transfusion

Definition, Use
- Administration of greater than 1 blood volume (~10 units) in 24 hours
- At Stanford, calling the blood bank for the Massive Transfusion Guideline (MTG) will get you 6 pRBCs, 4 FFP, and 1 unit of platelets
- May take up to 30 minutes to have blood prepared and picked up for OR use
- Plan ahead and use closed-loop communication with support staff.
  - Typically will utilize Belmont, Level 1 or both for rapid infusion
    - Plan ahead in any case you might anticipate needing MTG and have adequate access to rapidly transfuse

Complications
1. Hypothermia
- Blood products are stored cold!
2. Coagulopathy
  - Dilutional thrombocytopenia
    - Platelet count likely <100,000 after ~10 units pRBCs
  - Dilutional coagulopathies
    - Factors V & VIII (“labile factors”) in stored blood

Transfusion-Related Infections

Viral
- CMV >1:100
- Hepatitis B 1 in 220,000
- Hepatitis C 1 in 1,600,000
- HIV 1 in 2,000,000
(Figures based on 2000-2001 estimated risk)

Bacterial
- Most common with platelets (1:2000) due to their storage in dextrose at room temperature
- pRBCs not a major source (1:500,000) due to their storage at 4°C, but Yersinia is most likely organism

Blood is screened for HCV, HBV core Ab, HIV-1, HIV-2, HTLV, and syphilis
### Transfusion Reactions

*Whenever you suspect a transfusion reaction, STOP THE TRANSFUSION IMMEDIATELY, alert attending and surgeon*

**Febrile Non-Hemolytic Reaction**
- Due to recipient reaction to residual donor WBCs or platelets
- Benign; occurs with 0.5-1% of transfusions
- Treatment: Tylenol, Benadryl, slow transfusion

**Anaphylactic Reaction**
- Occurs within minutes; life-threatening
- Usually associated with IgA deficiency
- Signs/Symptoms: shock, angioedema, ARDS
- Treatment: D/C blood, fluids, Epi, antihistamines, ACLS

**Acute Hemolytic Reaction**
- Due to ABO incompatibility
- Symptoms (fever, chills, flank pain) masked by GA; watch for hypotension, diffuse oozing & brown urine; monitor for ARF and DIC
- Treatment: D/C blood, maintain alkaline UOP (bicarb, mannitol, Lasix), supportive care

### Transfusion-Related Acute Lung Injury (TRALI)

- Occurs 4-6 hours after transfusion
- Due to plasma-containing products (platelets and FFP > pRBCs) - usually donor antibodies reacting to recipient leukocytes
- Incidence: 1:1100 (but likely under-reported)
- Mortality 5-10% - Leading cause of transfusion-related mortality
- Signs & symptoms
  - Dyspnea, hypoxemia, hypotension, fever, pulmonary edema
- Diagnosis of exclusion
  - First R/O sepsis, volume overload, and cardiogenic pulmonary edema
- Treatment
  - Supportive care, similar to ARDS (O₂, mechanical ventilation, tidal volume 6-8 cc/kg)
  - Diuretics are not indicated (etiology = microvascular leak, not fluid overload)

### References

- [http://transfusionmedicine.stanford.edu/](http://transfusionmedicine.stanford.edu/)
Hypoxemia

Equations

**Alveolar-arterial (A-a) Gradient**

\[ P_{A-a}O_2 = P_{A}O_2 - P_{a}O_2 \]

**Alveolar Gas Equation**

\[ P_{A}O_2 = F_iO_2 (P_{atm} - P_{H2O}) - (P_{a}CO_2 / 0.8) \]

\[ \approx 100 \text{ mm Hg} \]

**Normal A-a Gradient:**
- \(< 10 \text{ mm Hg (F_iO_2 = 0.21)}\)
- \(< 60 \text{ mm Hg (F_iO_2 = 1.00)}\)
- \(< (\text{age} / 4) + 4\)
- \(\Delta A/\Delta R > 0.75\)

**Normal PaO2:**
- \(103 - \text{age/3}\)

5. **V/Q Mismatch**
- Often multifactorial
- COPD, ILD
- Dead space (i.e. ventilation w/o perfusion; PE, surgical clamping)
- Decreased CO (e.g. MI, CHF)

6. **Mixed Process**
- Hypoxemia is often due to multiple causes.
- Example: A tourist with COPD is visiting Denver, overdoses on heroin, now s/p MVA with chest wall trauma, pulmonary hemorrhage, Hct = 15%, and LV contusion. What is the cause of hypoxemia?

Causes of Hypoxemia

<table>
<thead>
<tr>
<th>Causes of Hypoxemia</th>
<th>P_{CO_2}</th>
<th>A-a Gradient</th>
<th>DLCO</th>
<th>Corrects w/ supplemental O_2?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low inspired O_2</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Hypoventilation</td>
<td>↑</td>
<td>Normal</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Diffusion Impairment</td>
<td>Normal</td>
<td>↑</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>Shunt</td>
<td>Normal</td>
<td>↑</td>
<td>Normal</td>
<td>No</td>
</tr>
<tr>
<td>V/Q Mismatch</td>
<td>Normal</td>
<td>↑</td>
<td>Normal</td>
<td>Yes</td>
</tr>
</tbody>
</table>

V/Q: ventilation without perfusion (V/Q=0); see pCO2. No increase in pCO2 if chemoreceptor mediated hyperventilation until shunt fraction \(>40\%\).

Hypoxemia in the OR

**Suggestion: Alveoli ↔ Machine**

1. **Listen to the lungs**
   - Atelectasis (rales)
   - Pulmonary edema (rales, decreased BS)
   - Bronchoconstriction (wheezes, ↑↓TV, shark-fin end-tidal CO2 tracing, ↑TV)
   - Mucus plug or secretions (PAP, TV, mucus in ET, rhonchi)
   - Right mainstem ET (SpO2 ~90%, PAP, TV, unilateral BS). Repositioning, insufflation with laparoscopic procedures)
   - Pneumothorax (unilateral BS, PAP, TV. HD instability, tracheal deviation if tension physiology)
   - Esophageal intubation (no end-tidal CO2 tracing, BS in stomach & not lungs)

2. **Check ETT**
   - Cuff deflation
   - Kinked/bitten or detached ETT
   - Extubation (ENT/Neuro cases when bed turned 180, surgeons near head, leaning on ET/circuit)

Causes of Hypoxemia

1. **Low inspired O_2**
   - Altitude (normal F_iO_2, decreased barometric pressure)
   - Hypoxic F_iO_2 gas mixture (crossed gas lines, loss of pipeline pressure)
   - Very responsive to supplemental O_2 - (PaCO2/0.8) term of alveolar gas equation becomes insignificant at higher FiO2 even with relatively high PaCO2. E.g. —
     - FiO2 21%
     - PaCO2 40 — PAO2 = 0.21(760-47) - 40/0.8 \(\approx 100\text{ mm Hg}\) —> SpO2 100%
     - PaCO2 80 — PAO2 = 0.21(760-47) - 80/0.8 \(\approx 50\text{ mm Hg}\) —> SpO2 80%
   - FiO2 30%
     - PaCO2 40 — PAO2 = 0.3(760-47) - 40/0.8 \(\approx 160\text{ mm Hg}\) —> SpO2 100%
     - PaCO2 80 — PAO2 = 0.3(760-47) - 80/0.8 \(\approx 115\text{ mm Hg}\) —> SpO2 100%

2. **Hypoventilation**
   - Drugs (opioids, benzodiazepines, barbiturates), chest wall damage (e.g. splinting from rib fx, neuromuscular diseases, obstruction (e.g. OSA, upper airway compression)

3. **Diffusion Impairment**
   - Increased diffusion pathway (e.g. pulmonary edema, fibrosis)
   - Decreased surface area (e.g. emphysema, pneumoectomy)
   - Decreased rate of O2-Hb association (e.g. high CO, anemia, PE)

4. **R → L Shunt**
   - Congenital (e.g. TOF, TA, ASD/VSD/PDA w/ Eisenmengers)
   - AVM (AV, congenital)
   - Pulmonary fluid (pneumonia, CHF, ARDS, NPPE, TACO, TRALI)
   - Atelectasis (mucus plugging, GA)
   - Endobronchial intubation (ETT is "mainstemmed")

5. **Mixed Process**
   - Hypoxemia is often due to multiple causes.
Hypoxemia in the OR

3. Check circuit
   – ETT disconnect
   – Circuit disconnect (check inspiratory/expiratory limbs at machine, connection near ETT, gas sampling line)

4. Check machine
   – Inspiratory & expiratory valves
   – Bellows
   – Minute ventilation
   – FIO2
   – Pipeline & cylinder pressures

5. Check monitors to confirm (you will probably do this 1st)
   – Pulse oximeter waveform
   – Look at the patient! - are they cyanotic? mottled?
   – Gas analyzer

Management of Hypoxemia

Assuming proper oximeter function, placement, and waveform:
- Place patient on 100% O2.
- Perform recruitment maneuver (30 sec at 30mmHg if pt can tolerate hemodynamically), then add or increase PEEP.
- Confirm ETT placement by auscultation, bilateral chest rise, and FOB if necessary.
- Suction airway
- Consider cardiovascular causes and restore volume, RBCs and/or cardiac output
- Send ABG/VBG

O2-Hb Dissociation Curve

Useful “anchor” points:
- S02 = 50%  P02 = 27
- S02 = 75%  P02 = 40
- S02 = 97%  P02 = 100

Note: P50 ≈ 27 mm Hg

O2-Hb Curve Shifts

Left Shift
(higher affinity for O2 = decreased unloading at tissues)
- Alkalosis
- Hypothermia
- Hypocarbia
- Decreased 2,3-DPG
- CO-Hb
- Met-Hb
- Sulf-Hb
- Fetal Hb
- Myoglobin

Right Shift
(lower affinity for O2 = increased unloading at tissues)
- Acidosis
- Hyperthermia
- Hypercarbia
- Increased 2,3-DPG
- Sickle Cell Hb
- Pregnancy
- Volatile anesthetics
- Chronic anemia

Factors Affecting Tissue Oxygenation

- Hb concentration
- O2 Saturation
- Cardiac Output
- O2 Consumption
- O2-Hb Affinity (P50)
- Dissolved O2 in plasma (little effect)

See “Equations” for a mathematical explanation of these factors.

Equations

Arterial O2 Content

\[ CaO2 = O2-Hb + Dissolved O2 \]
\[ = (Hb \times 1.36 \times SaO2/100) + (PvO2 \times 0.003) \]
\[ = (15 \times 1.36 \times 100\%) + (100 \times 0.003) \]
\[ \approx 20 \text{ cc O2/dl} \]

Mixed Venous O2 Content

\[ CvO2 = O2-Hb + Dissolved O2 \]
\[ = (Hb \times 1.36 \times SvO2/100) + (PvO2 \times 0.003) \]
\[ = (15 \times 1.36 \times 75\%) + (40 \times 0.003) \]
\[ \approx 15 \text{ cc O2/dl} \]
**Equations**

**O₂ Delivery**

\[ \text{DO₂} = \text{CO} \times \text{CaO₂} \]
\[ = 5 \text{ L/min} \times 20 \text{ cc O₂/dl} \]
\[ = 100 \text{ cc O₂/min} \]

**O₂ Consumption (Fick Equation)**

\[ \text{VO₂} = \text{CO} \times (\text{CaO₂} - \text{CvO₂}) \]
\[ = 5 \text{ L/min} \times 5 \text{ cc O₂/dl} \]
\[ = 25 \text{ cc O₂/min} \]

**O₂ Extraction Ratio**

\[ \text{ERO₂} = (\text{VO₂} / \text{DO₂}) \times 100 \]
\[ = 250 / 1000 \]  
\[ = 25\% \text{ (normal 22-30\%)} \]

---

**Other Concepts**

**Diffusion Hypoxia** = when using N₂O — low PₐO₂ as a result of hypoventilation in combination with the washout of N₂O from blood into the alveoli (dilutes the O₂ molecules decreasing PₐO₂)

**Absorption Atelectasis** = the tendency for airways to collapse if proximally obstructed or poorly ventilated; poorly soluble N₂ normally stents alveoli open, but patients on 100% O₂ have greater tendency toward atelectasis.

**Bohr Effect** = a property of Hb in which increasing CO₂, temperature, and acidosis promote decreased O₂-Hb affinity (i.e. right-shift of O₂-Hb curve).

**Haldane Effect** = a property of Hb in which O₂ binding promotes dissociation of CO₂ from Hb to the plasma (e.g. as when venous blood enters the lungs).

---

**References**


---

In one of my first days of residency (I was at the Valley, where there are 5 or 6 different kinds of anesthesia machines), it took me about 10 minutes in the morning to find the power button for the ventilator. I felt pretty dumb. The problem ended up being that I had a towel draped over the tray and it was obscuring the otherwise direct view of the right button. But it’s a humbling reminder that our job is a mix of complex physiology / pharmacology / etc. and very practical, mundane details. You can master all the ventilator physiology you want, but it won’t do you much good if you can’t turn the ventilator on.
**Electrolyte Abnormalities**

---

**Cardiac Action Potentials**

<table>
<thead>
<tr>
<th>Phase</th>
<th>Phase Name</th>
<th>SA Node Fiber</th>
<th>Ventricular Muscle Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rapid Upstroke</td>
<td>Slow inward ( I_{Ca} )</td>
<td>Fast inward ( I_{Na} )</td>
</tr>
<tr>
<td>1</td>
<td>Early Rapid Repolarization</td>
<td>Start outward ( I_{K} )</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>Plateau</td>
<td>Slow inward ( I_{Ca} ) = Outward ( I_{K} )</td>
<td>Inward ( I_{Ca} ) &lt; Outward ( I_{K} )</td>
</tr>
<tr>
<td>3</td>
<td>Final Rapid Repolarization</td>
<td>Outward ( I_{K} )</td>
<td>Outward ( I_{K} )</td>
</tr>
<tr>
<td>4</td>
<td>Diastolic Depolarization/ Resting Potential</td>
<td>Slow inward ( I_{Na} )</td>
<td>Inward ( I_{K} ) (minimal)</td>
</tr>
</tbody>
</table>

---

**Hyperkalemia**

**Definition**
- Mild \( K^+ = 5.5-6.5 \text{ mEq/L} \)
- Moderate \( K^+ = 6.5-8 \text{ mEq/L} \)
- Severe \( K^+ > 8 \text{ mEq/L} \)

**Contributing Factors**
- Renal disease
- Drugs (ACEI, NSAIDs, K-sparing diuretics, Digoxin, ß-blockers)
- Succinylcholine: acute, transient increase of 0.5-1 mEq/L
- Acidosis
- Transfusions
- Hemolysis
- Rhabdomyolysis (tourniquet), trauma
- Administration of Dantrolene to patients on Verapamil or concurrent administration of both drugs
- Hyponatremia, hypocalcemia
- Old packed red blood cells (can have \([K+]\) of 50 or greater!)

---

**EKG Progression of Hyperkalemia**

![EKG Progression of Hyperkalemia](image)

---

**Hyperkalemia**

**Signs and Symptoms**
- Cardiac conducting system abnormalities including dysrhythmias, conduction abnormalities, and cardiac arrest.
  - Classically associated with administration of succinylcholine to paralyzed, immobilized (ICU), neuro disease (MS, ALS, etc.) or burn patients.
  - If plasma \([K^+]\) is <6.0 mEq/L, cardiac effects are generally negligible.
  - As the concentration increases, may see tall, peaked T waves, especially in the precordial leads.
  - With further increases, the PR interval becomes prolonged, followed by a decrease in the amplitude of the P wave.
  - Finally, the QRS complex widens into a pattern resembling a sine wave and eventually culminates in VF arrest and asystole
- At plasma \([K^+] > 7.0 \text{ mEq/L}\), may have ascending paralysis that progresses to flaccid paralysis, inability to phonate, and respiratory arrest.
- Hyperkalemia may also accompany Malignant Hyperthermia.

---

**Hyperkalemia**

**Treatment**
- **Reverse membrane effects**
  - Ca gluconate (peripheral IV)
  - Ca chloride (central line)
- **Transfer extracellular \([K^+]\) into cells**
  - Bicarbonate (NaHCO\(_3\)) - 50-100 mEq over 5-10 minutes
  - Insulin (10-15 units) w/ Glucose (25 g = 50 mL of D50)
  - Beta-2 agonists (Albuterol)
- **Remove potassium from body**
  - Kayexalate (PO/PR)
  - Diuretics (proximal or loop)
  - Dialysis
### Hyperkalemia

**Anesthetic Considerations**
- Consider cancelling elective cases if $K^+ > 5.5$
- Consider alternative to succinylcholine
- EKG monitoring
- Avoid hypoventilation (respiratory acidosis)
- Treat acidosis
- Use NS instead of LR or Normosol
- Monitor for increased sensitivity to muscle relaxants

### Hypokalemia

**Definition**
- Mild $K^+ = 3.1-3.5 \text{ mEq/L}$
- Moderate $K^+ \leq 3 \text{ mEq/L}$ with PACs
- Severe $K^+ < 3 \text{ mEq/L}$ with PVCs

**Contributing Factors**

<table>
<thead>
<tr>
<th>Preoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI losses (NGT, N/V, Diarrhea)</td>
</tr>
<tr>
<td>Lasix, RTA</td>
</tr>
<tr>
<td>Magnesium deficiency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intraoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalosis (both metabolic and respiratory)</td>
</tr>
<tr>
<td>Insulin therapy</td>
</tr>
<tr>
<td>Hypothermia</td>
</tr>
</tbody>
</table>

**EKG Progression of Hypokalemia**

1. Flattened/inverted T wave
2. U waves
3. ST depression

**Hypokalemia**

**Signs & Symptoms**
- Acute hypokalemia causes hyperpolarization of the cardiac cell and may lead to ventricular escape activity, re-entrant phenomena, ectopic tachycardias, and delayed conduction.
- Arrhythmias
  - PACs, PVCs
  - SVTs (esp. A Fib/A flutter)
- Metabolic alkalosis
- Autonomic lability
- Weakness, DTRs
- Ileus
- Digoxin toxicity
- Enhanced response to muscle relaxants

**Treatment**
- Chronic hypokalemia = total body $K^+$ depletion (1 mEq/L decrease = 300-600 mEq total body deficit)
  - Peripheral IV - 10 mEq/hr
  - Central IV - 10-20 mEq/hr
  - Life-threatening - 5-6 mEq bolus
- Acute hypokalemia = likely a redistribution phenomenon
  - Reverse underlying cause (e.g. alkalemia secondary to mechanical hyperventilation)

**Hypokalemia**

**Anesthetic Considerations**
- Consider cancelling elective cases if $K^+ < 3-3.5 \text{ mEq/L}$ (based on chronicity of deficit).
- EKG monitoring
- KCl replacement if arrhythmias develop
- Avoid hyperventilation (respiratory alkalosis)
- Consider reducing dose of muscle relaxant 25-50%
Hypercalcemia

**Contributing Factors**
- Hyperparathyroidism
- Malignancy (especially lung, ENT, GI, GU, GYN, and multiple myeloma)
- Immobilization
- ARF
- Drugs (thiazide Ca²⁺ sparing diuretics, lithium)

**Signs & Symptoms**
- EKG changes (short QT)
- Hypertension
- Polyuria

**Treatment**
- Hydration (bolus crystalloid) + Lasix diuresis
- Dialysis

**Anesthetic Considerations**
- Consider cancelling elective cases
- Avoid acidosis (reduces Ca²⁺-albumin binding)
- Check serial K⁺ and Mg²⁺

Hypocalcemia

**Contributing Factors**
- Hypoparathyroidism
- Renal failure (decreased Vitamin D)
- Sepsis
- Magnesium deficiency (decreased end-organ response to PTH)

**Preoperative**
- Alkalosis (increased Ca²⁺-albumin binding)
- Massive pRBC transfusion (due to citrate binding)
- Drugs (heparin, protamine, glucagon)

**Intraoperative**
- EKG (prolonged QT, bradycardia)
- Hemodynamics (vasodilation, hypotension, decreased myocardial contractility, LV failure)
- Respiratory (laryngospasm, stridor, bronchospasm, respiratory arrest)
- Neuro (cramps, tetany, DTRs, perioral numbness, seizures, Chvostek’s sign, Trousseau’s sign)

**Signs & Symptoms**
- EKG (prolonged QT, bradycardia)
- Hemodynamics (vasodilation, hypotension, decreased myocardial contractility, LV failure)
- Respiratory (laryngospasm, stridor, bronchospasm, respiratory arrest)
- Neuro (cramps, tetany, DTRs, perioral numbness, seizures, Chvostek’s sign, Trousseau’s sign)

**Treatment**
- Calcium gluconate - 1 g = 4.5 mEq elemental Ca²⁺ (give via peripheral or central IV)
- Calcium chloride - 1 g = 13.6 mEq elemental Ca²⁺ (give via central IV)
- Do NOT give Ca²⁺ and NaHCO₃ together in the same IV - it will precipitate!
- Replace magnesium

**Anesthetic Considerations**
- EKG monitoring
- Avoid alkalosis
- Monitor paralysis with muscle relaxants
- Monitor iCa with transfusions

Hypermagnesemia

**Contributing Factors**
- Renal failure
- Hypothyroidism
- Iatrogenic (toxolysis)

**Signs & Symptoms**
- EKG (widened QRS, prolonged PRI, bradycardia)
- Hemodynamics (vasodilation, hypotension, myocardial depression)
- Neuro (DTRs, sedation, weakness, enhanced neuromuscular blockade)

**Treatment**
- Hydration (bolus crystalloid) + Lasix diuresis
- Ca²⁺ administration
- Diuresis

**Anesthetic Considerations**
- EKG monitoring
- Consider reducing dose of muscle relaxants 25-50%

Hypomagnesemia

**Contributing Factors**
- GI/Renal losses
- β-agonists (cause intracellular shift)
- Drugs (diuretics, theophylline, aminoglycosides, amphot B, cyclosporin A)

**Signs & Symptoms**
- Usually asymptomatic alone, but symptomatic in combination with induced hypokalaemia, hypocalcemia, and hypophosphatemia
- EKG (prolonged QT, PACs, PVCs, and A Fib)
- Neuro (neuromuscular excitability, AMS, seizures)

**Treatment**
- Replace with MgSO₄ to [Mg²⁺] > 2 mg/dl
- Watch for hypotension & arrhythmias with rapid administration!

**Anesthetic Considerations**
- EKG monitoring
- Check for coexistent electrolyte deficiencies.
### Summary of EKG Changes

<table>
<thead>
<tr>
<th></th>
<th>PR interval</th>
<th>QRS complex</th>
<th>QT interval</th>
<th>T waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocalcemia</td>
<td>short</td>
<td>narrow</td>
<td>prolonged</td>
<td>Inversion</td>
</tr>
<tr>
<td>Hypercalcemia</td>
<td>prolonged</td>
<td>widened</td>
<td>shortened</td>
<td>--</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>short</td>
<td>narrow</td>
<td>prolonged</td>
<td>--</td>
</tr>
<tr>
<td>Hypermagnesemia</td>
<td>prolonged</td>
<td>widened</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>short</td>
<td>narrow</td>
<td>prolonged</td>
<td>Flat, u-waves</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>prolonged</td>
<td>widened</td>
<td>--</td>
<td>Peaked</td>
</tr>
</tbody>
</table>

HYPO___ = short PR, narrow QRS, and prolonged QT

### References


I was in the middle of a long, stable but tedious endometriosis case in the ASC. I tried to open my next vial of dilaudid and blam! It shattered in my hand and I had 2mg of dilaudid dripping down my fingers. Not wanting to be pegged as a CA-1 with a drug problem, I quietly called the pharmacy to ask them how to document the incident. The discussion took about a minute or so, and when I hung up, I realized the attending surgeon had stopped the case and was staring at me, as was everyone else in the room. He told me he gets "easily distracted" and so he was patiently waiting until I was off the phone!

During the middle of a straightforward case I was drawing up my drugs for the next case. I dropped the propofol vial but after inspection nothing was damaged. I proceeded to inject air into the vial making it easier to draw up. Needless to say it exploded on me......and the sterile operative field. Bummer.

CSI tip: In July, keep your eyes peeled for distinctive splatter patterns of white stuff on new residents’ scrubs, badges, or other paraphernalia. It is a sign that they, too, have been sprayed with either Propofol or Kefzol while trying to draw up a syringe. The needle tip has to stay inside the vial.

CSI tip: Don’t believe it if another CA1 has a BandAid on their finger or hand and they tell you they cut themself in the kitchen or have a paper cut. Odds are they stabbed themself with a needle drawing up drugs in the morning. Hope it was clean!
Hypothermia & Shivering

Thermoregulation

Afferent Thermal Sensing
- Thermal inputs travel along A-delta (cold) and C fibers (warm) via the spinothalamic tract.
- Input comes from the skin, deep abdominal & thoracic tissues, spinal cord, brain, and hypothalamus (roughly 20% each).

Central Control
- Thermal inputs are “preprocessed” at numerous levels within the spinal cord and brainstem.
- Modulated by NE, DA, 5-HT, ACh, PGE, and neuropeptides.
- The preoptic-anterior hypothalamus is the central autonomic thermoregulatory center.

Efferent Responses
- Behavioral responses (shelter, clothing, voluntary movement, etc) are most important and are determined by skin temperature.
- Autonomic responses (skin vasomotor activity, nonshivering thermogenesis, shivering, and sweating) are ~80% determined by core temperature.

Interthreshold Range
- Interthreshold Range = tight thermoregulatory range between cold-induced and warm-induced responses, usually ~0.2°C.
- General anesthesia inhibits thermoregulation and increases the interthreshold range ~20-fold, to ~4°C.
- Regional anesthesia inhibits thermoregulation to lower half of body, increasing the range ~4-fold, to ~0.8°C.

Development of Hypothermia

Anesthetic-impaired thermoregulation
1. Redistribution hypothermia
2. Heat loss > heat production
3. Heat loss = heat production (steady-state heat balance)

Heat transfer to cold OR (in order of importance)
1. Radiation
2. Convection
3. Evaporation
4. Conduction

Benefits of Hypothermia
- Tissue metabolic rate decreases ~8% per 1°C decrease in body temperature.
- CNS protection from ischemic and traumatic injuries.
- Improves neurologic outcomes after cardiac arrest.
- Some protection against malignant hyperthermia.
- Cardiac protection as decreased metabolic and O2 requirement.

Definition and Measurement

- Hypothermia is defined as a core body temperature less than 36 degrees C.
- Temperature is measured from:
  - Nasopharynx (accurately reflects core temp, but can cause epistaxis)
  - Tympanic Membrane (reflects brain temp, but can cause perforation of ear drum)
  - Esophagus
  - Bladder (lags behind core temperature if low urine flow/output)
  - Rectum (slow response to changes in core temp, inaccurate with stool in rectum, contraindicated in neutropenic pt, fistula, etc.)
  - Skin (variable accuracy depending on skin perfusion)
  - Thermistor of Pulmonary Artery Catheter
Consequences of Hypothermia

• Increased myocardial morbidity (3x)
• Impaired coagulation (especially platelets), increased blood loss, & increased transfusion rates
• Increased infection rate (3x)
• Prolonged duration of drug action, delayed emergence
• Left-shifts O\textsubscript{2}-Hb curve (increased Hgb affinity for oxygen)
• Increased SVR
• Difficulty monitoring patient (e.g. BP cuff, S\textsubscript{p}O\textsubscript{2})
• Delays wound healing & jeopardizes grafts/flaps
• Altered mental status
• Increased sympathetic activity/stress response
• Increased postoperative shivering
• Prolonged PACU stay

Warming Strategies

Prevention of hypothermia is more effective than treatment!

Active Warming

• Forced air (Bair Hugger)
• Circulating warm H\textsubscript{2}O pad
• Radiant heat lamps
• IVF warmer
• Airway heating & humidification
• Warm the OR temperature

Passive Insulation (not as effective)

• Cotton blankets
• Surgical drapes
• Space blanket (silver plastic)

Effect of Warming Strategies

Consequences of Shivering

• Increased O\textsubscript{2} consumption
  – Can be up to a 400-500% increase
• Increased CO\textsubscript{2} production and V\textsubscript{E} (minute ventilation)
• Increased incidental trauma
• Increased intraocular and intracranial pressures
• Uncomfortable and/or painful
• Stresses wound edges
• Disrupts monitoring (e.g. NIBP, EKG, S\textsubscript{p}O\textsubscript{2})

Rates of MI do NOT correlate with shivering!

Treatment of Shivering

1. Skin surface warming and passive insulation
2. Pharmacologic:
  – Meperidine 12.5-25 mg IV (caution in renal and hepatic impairment)
  – Muscle relaxants (only in asleep, ventilated patients)

References

• Sessler DI. Mild perioperative hypothermia. NEJM, 336: 1730-7.
• Morgan, GE. Clinical Anesthesiology, 4th ed. New York: Lange Medical Books/McGraw-Hill

Etiology of Postop Shivering

Intraoperative hypothermia (duh!)… however…

– Shivering does NOT always occur in hypothermic patients, and…
– Shivering DOES occur in normothermic patients

Other possible etiologies:

– Recovery from volatile anesthetics
– Pain may facilitate shivering-like tremor
– Fever increases the thermoregulatory set point causing shivering in normothermic patients.

Effect of IVF Warming

Prevention of hypothermia is more effective than treatment!
Postoperative Nausea & Vomiting (PONV)

Why do we care about PONV?
- Up to 1/3 of patients without prophylaxis will experience PONV (up to 80% among high-risk pts)
- Causes patient discomfort – Patients report avoidance of PONV as a greater concern than post-op pain (willing to pay $56-100 out-of-pocket for effective PONV control)
- Prolonged PACU stay
- A leading cause of unanticipated hospital admission
- Possible aspiration risk and airway compromise
- Can lead to dehydration and electrolyte changes
- Can cause increased CVP, ICP, suture or mesh disruption, venous HTN and bleeding, or wound dehiscence

Evidence Based Risk Factors (Apfel et al., 2012)
- Christian Apfel (UCSF PONV guru) meta-analysis of 22 PONV studies (>95,000 pts)
- Highest risk factors:

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>OR (versus not having risk factor)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Gender</td>
<td>2.57 (2.32-2.84)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>History of PONV/Motion Sickness</td>
<td>2.09 (1.90-2.39)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Non-smoking Status</td>
<td>1.82 (1.68-1.98)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Younger Age</td>
<td>0.88 per decade</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Use of Volatile Anesthetics</td>
<td>1.82 (1.56-2.13)</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Post-op Opioids</td>
<td>1.39 (1.20-1.60)</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

Major Risk Factors
- Patient-Related
  - Female > male
  - History of PONV or motion sickness
  - Young > old
  - Non-smoker > Smoker

- Anesthetic-Related
  - Volatile anesthetics including N2O
  - Drugs (postoperative narcotics, neostigmine)
  - Aggressive hydration (gut edema)

- Surgery-Related
  - Duration of surgery – higher risk if > 2 hours
  - Type of surgery shown to have MINIMAL effect (once thought laparoscopic, ENT, neuro, breast, plastics, strabismus higher risk)

Simplified Apfel Score

PONV Prophylaxis Based on Apfel Score
- Combinations should be with drugs that have a different mechanism of action
- Try not to order agents for treatment in PACU that have already been used for ppx (e.g. Re-administration of Zofran in PACU not as effective as first dose used for ppx)
Antiemetic Classes

5-HT3 Antagonists (e.g. Ondansetron, Granisetron)
- Serotonin receptor antagonist
- More effective at preventing emesis than nausea
- All agents equally effective
- Zofran 4-8 mg IV or Kytril 0.1-1 mg IV before end of case (usually given ~30 minutes before emergence)

Steroids
- Cheap and effective
- Can be given anytime, for prolonged PONV relief
- Weigh risks/benefits in diabetics
- Decadron 4-10 mg IV anytime during case (given post-induction to avoid severe perineal itching)

Gastrokinetic (e.g. Metoclopramide)
- Dopamine antagonist; can cause extrapyramidal SEs
- Increases GI motility and LES tone, avoid in patients with bowel obstruction
- Reglan 10-20 mg IV before end of case
- Contraindicated in Parkinson’s patients

Phenothiazines (e.g. Promethazine, Prochlorperazine)
- Dopamine antagonist
- Can cause sedation and extrapyramidal side effects
- Phenergan 12.5-25 mg at end of case

Anticholinergics (e.g. Scopolamine patch)
- Centrally acting
- Transdermal administration requires 2-4 hours for onset.
- Anticholinergic side effects (“mad as a hatter”, “blind as a bat”, “dry as a bone”, “red as a beet”) - potentially worse than N/V for some patients
- Scopolamine patch 1.5 mg TD q72hr, place posterior to ear lobe
- Warn patients not to touch patch and wipe eyes -> dilate affected pupil

Other Antiemetic Agents

Vasopressors
- Ephedrine 50 mg IM
  • Prevents intestinal hypoperfusion

Induction agents
- Propofol 10-20 mg IV bolus in PACU vs low-dose infusion during case

Antihistamines (H2-blockers)
- Cimetidine 300 mg IV
- Ranitidine 50 mg IV
  • Often given pre-operatively

Chemoreceptor Trigger Zone

IMPACT Trial: Study Design
(Apfel et al., 2004)

5161 patients, 6 treatments (26 = 64 treatment groups)

- Randomization
- Remifentanil gtt
- Fentanyl
- Induction & Intubation
  - 30% O2 + N2
  - 30% O2 + N2O
  - 80% O2 + N2
- Volatile Anesthetic
- Propofol gtt
- 20 minutes after start
  - +/- Dexamethasone 4 mg
  - +/- Droperidol 1.25 mg
- 20 minutes before end
  - +/- Ondansetron 4 mg

IMPACT Trial: Results
(Apfel et al., 2004)

<table>
<thead>
<tr>
<th>Intervention</th>
<th>RR Reduction</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexamethasone (vs. none)</td>
<td>26.4%</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Ondansetron (vs. none)</td>
<td>26.0%</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Nitrogen carrier (vs. N2O)</td>
<td>12.1%</td>
<td>0.003</td>
</tr>
<tr>
<td>Propofol gtt (vs. volatiles)</td>
<td>18.9%</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Remifentanil gtt (vs. fentanyl)</td>
<td>-5.2%</td>
<td>0.21</td>
</tr>
</tbody>
</table>

- Interventions acted independently of each other; relative risk reduction (RRR) of combined therapy can be estimated by multiplying individual RRRs.
- Average PONV = 34% (59% with volatile + N2O + remi + no antiemetics; 17% with propofol + N2 + fentanyl + antiemetics x 3).
- Use the safest and cheapest antiemetic first; use combined therapy only in moderate or high-risk patients.
Algorithm for PONV Treatment

- Evaluate risk of PONV in surgical patient
  - Low
  - Moderate
  - High

- No anesthetics unless there is risk of surgical site pain and/or vomiting (SS)
  - Consider regional anesthesia (RA)
  - Consider local anesthesia (LA)

- Avoid N2O and/or volatile anesthetics
- Minimize opioids (consider tylenol, NSAIDs, etc.)
- Minimize (<2.5 mg) or eliminate neostigmine
- Maintain euvolemia; avoid hypervolemia (gut edema)
- Avoid hypotension and cerebral hypoxia
- Use a combination of antiemetics in different classes
- Consider acupuncture, acupressure, or transcutaneous electrical nerve stimulation (rarely used)

References

Extubation Criteria & Delayed Emergence

Extubation Overview

- Not simply a reversal of intubation
  - Post-surgical conditions can be very different in terms of anatomy, physiology, and even environment
- Potential for severe morbidity, even death
  - Hypoxia
    - Hypoventilation
  - Laryngospasm, upper airway obstructions, bronchospasm
  - Pulmonary injury
    - Aspiration, negative pressure pulmonary edema
  - Cardiovascular injury
    - HTN, tachycardia, arrhythmias, myocardial demand / ischemia
  - Surgical site injury
    - Wound dehiscence, increased intracranial or intraocular pressure

Extubation Considerations

**Difficult Airway Society guidelines (2011)**

1. **Assessment of airway risk factors**
   - Was the airway normal / uncomplicated at induction?
     - e.g. OSA, difficult mask and/or intubation, maxillofacial trauma, laryngeal mass
   - Has the airway changed?
     - e.g. surgical swelling/hematoma, edema from fluid/blood resuscitation
     - e.g. thyroidectomy, CEA, cervical spine or maxillofacial cases

2. **Assessment of general risk factors**
   - Any expected relevant post-op changes to patient condition?
     - e.g. neuro status, pulmonary or cardiovascular issues
   - Will the patient likely meet “Routine Extubation Criteria”?
     - Or might they be too sick/unstable extubate?

**Routine Extubation Criteria**

1. **Vital signs stable**
   - BP/HR stable within acceptable ranges (on minimal pressors)
   - T > 35.5°C
   - Spontaneous RR >6 and <30, SpO2 > 90%

2. **ABG “reasonable” with FiO2 ≤ 40%**
   - pH ≥7.30, PaO2 ≥60 mmHg, PaCO2 ≤50-60, normal lytes

3. **Adequate reversal or neuromuscular blockade**
   - TOF 4/4, TOF ratio >0.7-0.9, tetany >5 secs
   - Sustained head lift or hand grasp >5 secs

4. **Respiratory mechanics adequate**
   - Spontaneous Vent >5 mL/kg, Vital Capacity >15mL/kg

5. **Protective reflexes (gag, swallow, cough) returned**

6. **Awake, alert, able to follow commands**

Extubation Risk Stratification

- **“Low Risk”**
  - Uncomplicated airway with no general risk factors
    - Extubate in OR

- **“At Risk”**
  - Reintubation potentially difficult
    - Extubate in OR with extra precautions / equipment
      - e.g. Bougie, Glide and/or fiberoptic in room, extubate over exchange cath?
  - Questionable airway patency
    - Perform “Cuff-Leak Test” and/or visualize with fiberoptic scope
      - If patent ⇒ extubate in OR (with extra precautions / equipment, as above)
      - If not patent ⇒ remain intubated and transfer to ICU
  - General risk factors present and/or not meeting “Routine Extubation Criteria” despite attempts to correct deficits
    - Remain intubated and transfer to ICU

Preparing to Extubate

- **Standard preparation any extubation**
  1. Ensure back-up airway / re-intubation equipment available
  2. Pre-oxygenate with 100% O2
  3. Reverse neuromuscular blockade
  4. Turn off primary anesthetic agent
  5. Insert a bite block (or oral airway), suction as appropriate
  6. Position patient and bed appropriately
  7. Minimize touching pt during “light” anesthesia (i.e. Stage 2)
  8. Confirm that all “Routine Extubation Criteria” are met

- **Extubate**
  - Deflate cuff, remove tube (+/- apply positive pressure)
  - Provide 100% O2, ensure patent airway, adequate breathing
Stages of Anesthesia

Described by Guedel in 1937 to describe depth of anesthesia, originally from ether. Classification still used today despite newer agents and delivery techniques.

Stage 1 – Amnesia
- Ranges from awake to loss of consciousness, amnestic throughout

Stage 2 – Delirium/Excitement
- Potential for vomiting, laryngospasm, breath-holding
- Hypertension, tachycardia, dilated/non-conjugate pupils
- Uncontrolled, non-purposeful movement, unable to follow commands

Stage 3 – Surgical Anesthesia
- Absence of movement
- Constricted pupils, regular respiration, cardiovascular stability (e.g. prevention of tachycardia and/or hypotension)

Stage 4 – Overdose
- Shallow or no respiration, dilated/non-reactive pupils, cardiovascular collapse (e.g. hypotension)

Delayed Emergence

- Definition?
  - No specific definition, but commonly described as “the case in which a patient takes longer to awaken from a specific circumstance than a clinician would expect.”
  - As compared to the patient’s baseline level of consciousness

- Causes
  1. Residual drug effects (most common)
     - NMBs, volatile agents, propofol, opioids, benzodiazepines
     - Inappropriate doses / timing (e.g. overdose, long context-sensitive 1/2 time)
     - Potential for effects (e.g. synergistic effects with drugs/EtOH, NMB prolonged by certain abx)
     - Extremes of age, low baseline cognitive/neurologic reserve
     - Rare metabolism deficiency (e.g. pseudocholinesterase) or neuromuscular disorder
  2. Metabolic derangements
     - Acid-base disturbances, electrolyte or blood glucose abnormalities
  3. Respiratory derangements
     - Hypoxemia, hypercarbia (i.e. CO2 narcosis)

Diagnosis and Treatment

**Stanford Protocol for Delayed Emergence**

1. Confirm that all anesthetic agents (inhaled/IV) are off
2. Check for residual NMB paralysis, reverse as appropriate
   - If 2+/4 twitches, give Neostigmine – maximum of 5 mg IV. Give with glycopyrrolate.
   - If 1+/4 twitches, can give Sugammadex 2mg/kg.
3. Consider opiate reversal
   - Start with 40mcg naloxone IV, repeat Q2 mins up to 200mcg total
4. Consider benzodiazepine reversal
   - Start with 0.2mg flumazenil IV, repeat Q1 mins up to 1mg total
5. Consider volatile gas and anticholinergic (e.g. scopolamine) reversal
   - Give physostigmine 1.25mg IV x1
6. Check blood glucose level
   - Treat hypo- or hyperglycemia as necessary

Diagnosis and Treatment

7. Check ABG and electrolytes
   - Rule out CO2 narcosis, hypoxemia
   - Rule out hypo- or hypernatremia (correct slowly to avoid CNS pathology from rapid shifts)
8. Check patient’s temperature
   - Actively warm if less than 36 degrees C (e.g. Bair hugger, raise temp in the OR)
9. Perform neuro exam if possible:
   - Examine pupils, symmetric motor movement, presence/absence of gag/cough
   - Obtain STAT head CT to rule out acute hemorrhage / hemiation
   - Obtain STAT neurology/neurosurgery consult
   - Consider further workup (e.g. MRI, EEG)

References

Laryngospasm & Aspiration

Larynx Anatomy

Larynx Anatomy: Innervation

<table>
<thead>
<tr>
<th>Nerve</th>
<th>Motor</th>
<th>Sensory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent Laryngeal nerve (from CN X)</td>
<td>Thyroarytenoid (tensor)</td>
<td>Subglottic mucosa</td>
</tr>
<tr>
<td></td>
<td>Lateral Cricoarytenoid (adductor)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transverse Arytenoid (adductor)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Posterior Cricoarytenoid (abductor, tensor)</td>
<td></td>
</tr>
<tr>
<td>Superior Laryngeal nerve (from CN X)</td>
<td>Internal branch</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Epiglottis/Tongue Base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supraglottic mucosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External branch</td>
<td>Cricothyroid (adductor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anterior subglottic mucosa</td>
</tr>
</tbody>
</table>

Does bilateral recurrent laryngeal nerve injury produce the same defect as succinylcholine?

Laryngospasm

What is laryngospasm?
- Closure of the true vocal cords (+/- the false vocal cords) from the action of laryngeal muscles → occlusion of the glottis/laryngeal inlet
- Consequences include hypoxia, hypercapnia, and negative pressure pulmonary edema

Predisposing Factors
- Stage 2 of anesthesia (excitement/delirium)
- Light anesthesia relative to surgical stimulation
- Mechanical irritants to the airway
  - Blood or secretions
  - Airway suctioning or instrumentation
- GERD
- Upper respiratory tract infection (0.85-5% incidence)

Laryngospasm

Prevention
- Ensure adequate anesthetic depth before manipulation or movement of patient
- Clear secretions before extubation
- Topicalize larynx with local anesthetic
- Muscle relaxants

Management • CALL FOR HELP EARLY!
1. Jaw thrust, head tilt, oral or nasal airway
2. Deepen anesthesia with IV agent (e.g., Propofol)
3. CPAP via bag-mask ventilation with 100% O₂
4. Suction oropharynx
5. Succinylcholine 10-20 mg IV, maintain airway with bag-mask or ETT until spontaneously breathing
6. Prepare for surgical airway
7. Monitor for post-obstructive negative pressure pulmonary edema (NPPE)
Negative Pressure Pulmonary Edema

Causes
- Laryngospasm
- Upper airway obstruction/ETT obstruction
- Incidence of 0.1% of anesthetics

Risk Factors
- Laryngospasm
- Young (20-40 years), healthy (ASA I-II), male (80%)

Presentation
- Laryngospasm, chest wall retraction
- Frothy, serosanguinous or bloody airway secretions
- \( \text{SpO}_2 \), \( \text{ETCO}_2 \), hypotension, large \( P_{(A-a)} \) gradient
- CXR with pulmonary edema

Pathogenesis
- Negative intrathoracic pressure (up to 100 cmH\(_2\)O)
- \( \text{RV preload} \rightarrow \text{pulmonary hydrostatic pressure} \)
- \( \text{RV preload} \rightarrow \text{interventricular septum shift} \rightarrow \text{LV diastolic dysfunction} \rightarrow \text{PCWP} \)
- Hypoxia, hypercapnea, acidosis \( \rightarrow \) HPV & \( \text{PVR} \)
- Stress response \( \rightarrow \) \( \text{SVR} \) and \( \text{LV} \) afterload
- Alveolar-capillary membrane leak \( \rightarrow \) protein loss

Treatment
- Supportive care (\( \text{O}_2 \), IPPV, PEEP/CPAP)
- Conservative management until process reverses; consider volume and/or pressors PRN.
- Lasix is usually NOT helpful
- Does not typically require ETT

Pulmonary Aspiration

Predisposing Conditions
- Full stomach or unknown NPO status (e.g. trauma)
- Intra-abdominal process (bowel obstruction, ileus, inflammation)
- Gastroparesis (narcotics, DM, uremia, EtOH, infection)
- GE junction incompetence (GERD, hiatal hernia, scleroderma)
- Pregnancy, obesity
- Neuromuscular disease processes
- Difficult intubation and/or prolonged bag-mask ventilation

Prevention
- Follow NPO guidelines for routine elective cases
- Use metoclopramide, H\(_2\)-blockers, and antacids in high-risk patients
- Consider awake, regional anesthetic
- Consider awake, upright intubation and/or RSI
- If present, leave NGT to suction
- Apply cricoid pressure until ETT position confirmed
- Minimize bag-mask PPV and/or keep pressure \(<20\) cmH\(_2\)O
- Extubate after recovery of protective reflexes

Aspiration Pneumonitis
- Sterile, chemical pneumonitis caused by aspiration of acidic and particulate material
- Highest risk in patients with gastric volume \(>25\) ml and pH \(<2.5\).
- Aspiration does NOT always cause pneumonitis

NPO Guidelines

<table>
<thead>
<tr>
<th>Ingested Material</th>
<th>Minimum Fasting Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>2 hours</td>
</tr>
<tr>
<td>Breast Milk</td>
<td>4 hours</td>
</tr>
<tr>
<td>Formula</td>
<td>6 hours</td>
</tr>
<tr>
<td>Non-human Milk</td>
<td>6 hours</td>
</tr>
<tr>
<td>Light Meal</td>
<td>6 hours</td>
</tr>
<tr>
<td>Fatty Meal</td>
<td>6-8 hours</td>
</tr>
</tbody>
</table>

- There is no evidence for the routine use of metoclopramide, H\(_2\)-blockers, proton pump inhibitors, antiemetics, or anticholinergics in preventing aspiration or in reducing its morbidity/mortality.
- If given preoperatively, only nonparticulate antacids (Sodium Citrate) should be used.

Management
- Place patient in head-down position
- Immediately suction pharynx and trachea before PPV
- \(100\%\) \( \text{O}_2 \), intubate, apply PEEP or CPAP
- Supportive care - monitor for chemical PNA/ARDS
- Possible bronchoscopy for removal of particulate matter, if suspected
- Antibiotics are not necessary unless subsequent infection develops (or, as happens more commonly in pediatrics, fecal matter is aspirated)
- Steroids are not indicated
References

- Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedure: an updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Anesthesiology. 2011. Mar;114(3):495-511
**Oxygen Failure in the OR**

**Etiology**

- Loss of Pipeline Oxygen
  - Exhaustion of central O\(_2\) supply.
  - Obstruction of central O\(_2\) supply line to OR.
  - O\(_2\) shutoff valve in OR is off.
  - Obstruction or disconnection of O\(_2\) hose in the OR.
  - Failure of O\(_2\) regulator in the anesthesia machine.

- Faulty Oxygen Supply
  - Crossing of pipelines during construction/repairs.
  - Incorrect connection of gas hoses.
  - Non-O\(_2\) cylinder at the O\(_2\) yoke.
  - Wrong gas in the O\(_2\) cylinder.
  - Broken flowmeter.

**Prevention**

- **Pre-anesthesia Machine Check**
  - Check pipeline pressure >50 psi.
  - Check O\(_2\) tanks >50% full.
  - Calibrate O\(_2\) analyzer.

- **Supply-Side Safety Features**
  - Color-coded gas tanks
  - DISS, PISS, and Quick Connects

- **Anesthesia Machine Safety Features**
  - Flow-meter arrangement
  - O\(_2\):N\(_2\)O ratio controller
  - Oxygen supply failure protection device ("fail-safe valve")

**Gas Cylinders**

<table>
<thead>
<tr>
<th>Gas</th>
<th>E-Cylinder Capacity (L)</th>
<th>Pressure (psi)</th>
<th>Color (USA)</th>
<th>Color (Int’l)</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(_2)</td>
<td>660</td>
<td>1900</td>
<td>Green</td>
<td>White</td>
<td>Gas</td>
</tr>
<tr>
<td>Air</td>
<td>625</td>
<td>1900</td>
<td>Yellow</td>
<td>White &amp; Black</td>
<td>Gas</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>1590</td>
<td>745</td>
<td>Blue</td>
<td>Blue</td>
<td>Liquid + Gas</td>
</tr>
<tr>
<td>N(_2)</td>
<td>650</td>
<td>1900</td>
<td>Black</td>
<td>Black</td>
<td>Gas</td>
</tr>
</tbody>
</table>

How long can you use an O\(_2\) tank starting at 430 psi running at 5 L/min?

**Diameter Index Safety System**

**Pin Index Safety System**

PISS for Gas Cylinders

Quick Connects for Supply Lines
Flowmeter Arrangement

- A leak in the upstream O₂ flowmeter ("Incorrect sequence") results in a hypoxic gas mixture.
- A leak in the Datex-Ohmeda or Draeger flowmeter arrangements may deliver less Air or N₂O than expected, but the mixture will NOT be hypoxic because O₂ is closest to the FGF outlet.

O₂:N₂O Ratio Controller

Linkage mechanisms between flow valves can be either mechanical (above), pneumatic, or electronic.

Oxygen Failure Protection Device

If Pₒ₂ falls, N₂O cannot flow!

Detection

- Pressure gauges fall (pipeline, tanks)
- Low O₂ alarms (O₂ supply failure, Fᵢₒ₂ analyzer)
- Flowmeters fall (O₂ and other gases)
- O₂ flush inoperative
- Bellows inoperative
- Apnea alarms (spirometer, capnograph)
- Increasing O₂ flow makes the problem worse
- Hypoxemia, hypercarbia
- Arrhythmias, bradycardia, cardiac arrest

Management

- Notify surgeon, call for help.
- Verify problem (pressure gauges, flowmeters, O₂ flush, O₂ analyzer, capnograph).
- Switch to O₂ cylinder (calculate remaining time).
- Use manual ventilation to conserve O₂.
- Check valves, hoses, couplers.
- D/C supply lines if crossed pipelines suspected.
- Call for backup O₂ tanks.
- Close breathing circuit, manually ventilate.
- Switch to self-inflating bag (Ambu-Bag), Jackson-Reese with external tank, or mouth-to-ETT if necessary.
- Consider switching to TIVA until cause of failure is known.

References

Anaphylaxis

Overview
- Allergic reactions are an important cause of intraoperative morbidity and mortality (3.4% mortality)
- Account for approximately 10% of all anesthetic complications
- More than 90% of reactions occur within 3 minutes, but can be delayed by hours with variable presentation
- Can be difficult to identify cause, as multiple drugs are given early in anesthetic
- Usually the faster the reaction, the more severe the course
- Anaphylaxis involves a combination of systemic (pulmonary, CV, GI) and dermal signs & symptoms, all due to release of vasoactive mediators which:
  - Increase mucous membrane secretions
  - Increase bronchial smooth muscle tone
  - Decrease vascular smooth muscle tone and increase capillary permeability
- Anaphylactic and anaphylactoid reactions present similarly and are treated IDENTICALLY

Anaphylaxis vs. Anaphylactoid
- **Anaphylaxis**
  - IgE-mediated Type I hypersensitivity reaction
  - Sensitization = prior exposure to an antigen which produces antigen-specific IgE antibodies that bind to Fc receptors on mast cells and basophils.
  - Upon re-exposure to the antigen, IgE antibodies then cross-link Fc receptors causing degranulation and release of stored mediators (vasoactive)
  - Reaction is Dose Independent
- **Anaphylactoid**
  - Direct activation of mast cells and basophils by non-IgE mechanisms, or activation of complement system
  - May occur on 1st exposure to an antigen

Sequence of Events
- Release of vasoactive amines
  - Histamine
  - Leukotrienes
  - Kinins
  - Prostaglandins
  - Chemotactic factors
  - Tryptase

Sign and Symptoms

<table>
<thead>
<tr>
<th>System</th>
<th>Symptoms (e.g. MAC/Regional)</th>
<th>Signs (e.g. General or Regional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td>Dizziness</td>
<td>Hypoxia</td>
</tr>
<tr>
<td></td>
<td>Chest tightness</td>
<td>Pulmonary edema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wheezing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laryngeal edema</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Itching</td>
<td>Hypotension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tachycardia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dysrhythmias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulmonary HTN</td>
</tr>
<tr>
<td>Cutaneous</td>
<td>Itching</td>
<td>Perioral edema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flushing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Periorbital edema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hives</td>
</tr>
<tr>
<td>Renal</td>
<td></td>
<td>Decreased urine output</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Nausea, vomiting, diarrhea</td>
<td></td>
</tr>
<tr>
<td>Hematologic</td>
<td></td>
<td>DIC</td>
</tr>
</tbody>
</table>

Anaphylactic reactions may have variable presentations with some or all of these signs & symptoms.

Common Precipitants

<table>
<thead>
<tr>
<th>Substance</th>
<th>Incidence of perioperative anaphylaxis (%)</th>
<th>Most commonly associated with perioperative anaphylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle relaxants</td>
<td></td>
<td>Roc &gt; Vec &gt; Cis &gt; Sux</td>
</tr>
<tr>
<td>Natural rubber latex</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>Hypothalamics</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Hypothermia</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Membrane</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Other substances</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td><strong>Suggamadex</strong></td>
<td><strong>14</strong></td>
<td></td>
</tr>
</tbody>
</table>
Latex Allergy

• Obtain a careful history:
  – Healthcare workers (frequent exposure)
  – Children with spina bifida (multiple prior medical procedures/exposures)
  – Urogenital abnormalities (h/o multiple urogenital catheters)
  – Food allergies (mango, kiwi, avocado, passion fruit, bananas, fig, chestnut)
• Establish a latex-free environment:
  – Schedule patient as first case of the day
  – Most equipment & supplies are latex-free; if available, have a cart of latex-free alternatives available
  – Remove tops of multi-dose vials when drawing up drugs
• Prophylactic steroids and/or H1-blockers (uncertain benefit)
• Prepare for the worst, hope for the best

Management

Acute Phase
1. Stop administration of offending antigen
2. Notify surgeon AND call for help
3. Maintain airway, give 100% O2
4. In cases of severe cardiovascular collapse, consider discontinuation of all agents that may augment hypotension such as inhaled anesthetics (via vasodilation) & narcotic infusions (via suppressing sympathetic response).
  - Give other amnestic agents (e.g. scopolamine, midazolam)
5. Fluids 2-4 L or more (compensate vasodilation, hypotension)
6. Epinephrine = drug of choice due to alpha-1 supports BP; beta-2 bronchial smooth muscle relaxation
  1. Start 5-10 mcg IV boluses for hypotension; 0.1-0.5 mg IV PRN CV collapse. Escalate as needed.
  2. If no IV access, give 0.3-0.5 mg IM in anterolateral thigh, repeat q5-15 min
  3. ACLS doses (0.1-1 mg) for cardiovascular collapse

Prevention

• Obtain a careful history:
  – Previous allergic reactions?
  – Atopy or asthma?
  – Food allergies?
• Test dose drugs followed by slow administration
  – reduces anaphylactoid, but not anaphylactic reactions
• Judicious use of blood products
• Use prophylactic steroids and/or H1-blockers
  – H1-blockers: no clear benefit; may blunt early signs before presenting as full-blown episode.
  – If no alternative agent, may pursue desensitization.
• Obtain consultation from an allergist if necessary.

References


Testing for an Allergy

• Testing may not be necessary if there is a clear temporal association between drug and reaction
• Measurement of serum mast cell tryptase levels can help establish the diagnosis in uncertain cases of anaphylaxis.
• Follow up with an allergist may be useful for establishing a diagnosis (e.g. skin testing)
Local Anesthetics (LA)
- Provide anesthesia and analgesia by disrupting the conduction of impulses along nerve fibers
- LAs block voltage-gated sodium channels
  - Reversibly bind intracellular alpha subunit
  - Inhibit the influx of sodium, thus preventing an action potential from being reached
  - Resting membrane and threshold potentials are not affected

Local Anesthetic Structure
- Three Major Chemical Moieties:
  - Lipophilic aromatic benzene ring
  - Ester or amide linkage
  - Hydrophilic tertiary amine
- Local anesthetics are weak bases
  - pKa > 7.4

Physiochemical Properties
- At physiologic pH, local anesthetics are in equilibrium:
  - Ionized (water-soluble) $\leftrightarrow$ nonionized (lipid-soluble)
- The ratio of the 2 forms depends on the pKa of the drug and the tissue pH

Physiochemical Properties
- Mechanism of Action
  1) Nonionized (base, lipid-soluble) form crosses the neuronal membrane
  2) Re-equilibration between the 2 forms occurs in the axoplasm
  3) Ionized (cationic, water-soluble) form binds to the Na channel
- Having a pKa closer to physiologic pH means a greater fraction of nonionized form (able to cross the neuronal membrane) for a faster onset
- Conversely, in an infected (acidic) environment, the pKa will be further from the environmental pH and have a slower onset
- Thus, Speed of onset is related to pKa (degree of ionization)

Physiochemical Properties
- Potency is related to lipid solubility
- Duration of action is related to protein binding
**Structure**

- The type of linkage divides the local anesthetics into 2 categories:

<table>
<thead>
<tr>
<th>Amides (i before -caine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidocaine</td>
</tr>
<tr>
<td>Bupivacaine</td>
</tr>
<tr>
<td>Ropivacaine</td>
</tr>
<tr>
<td>Mepivacaine</td>
</tr>
<tr>
<td>Etidocaine</td>
</tr>
<tr>
<td>Levobupivacaine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Esters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocaine</td>
</tr>
<tr>
<td>2-Chloroprocaine</td>
</tr>
<tr>
<td>Procaine</td>
</tr>
<tr>
<td>Tetracaine</td>
</tr>
</tbody>
</table>

**Amides vs. Esters**

- **Amides:**
  - Metabolized by the liver
  - Aromatic hydroxylation, N-dealkylation, Amide hydrolysis

- **Esters:**
  - Relatively unstable in solution
  - Metabolized by plasma cholinesterases
  - Hydrolysis occurs at ester linkage
  - p-Aminobenzoic acid (PABA) metabolite can induce allergic-type reactions in a small percentage of patients

**Clinical Usage**

- Provide anesthesia and analgesia through several routes of delivery
  - Topical
  - IV
    - Systemic local anesthetics inhibit inflammation, decrease the hemodynamic response to laryngoscopy, decrease postoperative pain and opioid consumption and can reduce MAC requirements by 40%
  - Epidural
  - Intrathecal (Spinal)
  - Perineural (Regional)
    - Small diameter (A delta) and myelinated nerves are most susceptible, thus sensory loss precedes motor weakness

**Drug Onset Max dose Max dose with Epi**

<table>
<thead>
<tr>
<th>Drug</th>
<th>Onset</th>
<th>Max dose (mg/kg)</th>
<th>Max dose with Epi (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidocaine</td>
<td>Rapid</td>
<td>4.5</td>
<td>7</td>
</tr>
<tr>
<td>Mepivacaine</td>
<td>Medium</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>Slow</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>Ropivacaine</td>
<td>Slow</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>Tetracaine</td>
<td>Slow</td>
<td>1.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Chloroprocaine</td>
<td>Rapid</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

*Bupivacaine (Marcaine) is commonly used by surgeons for infiltration at 0.25% (2.5mg/ml), with max dose 2.5mg/kg, they can use a max volume of 1cc/kg (70kg pt gets max 70cc). Now when they ask, look like a pro!*

**Toxicity**

- Systemic absorption varies by site of injection (and is related to the vascularity of the tissue)

- IV > tracheal > intercostal > caudal > epidural > brachial plexus > sciatic/femoral > subcutaneous

- Rate and extent of systemic absorption also depends on dose, the drug’s intrinsic pharmacokinetic properties, and the addition of a vasoactive agent (i.e. epinephrine).

**Toxicity**

- **CNS toxicity**
  - Local anesthetics readily cross the blood brain barrier
  - Clinical manifestations: Lightheadedness, tinnitus, tongue numbness → CNS depression, seizure → coma

- **Cardiovascular toxicity**
  - Dose dependent blockade of Na channels → disruptions of cardiac conduction system → bradycardia, ventricular dysrhythmias, decreased contractility, cardiovascular collapse/ circulatory arrest
  - Bupivacaine especially has severe CV side effects
  - Approximately 3x the amount of local anesthetics are required to produce cardiovascular toxicity than CNS toxicity
  - Addition of epi allows for early detection of intravascular injection and also increases the max allowable dose
Treatment of LA toxicity

- Initial management:
  - Stop local anesthetic
  - Give benzodiazepines for seizure, avoid propofol when there are signs of CV instability.
  - Begin ACLS: CPR, securing airway.
  - Reducing individual epinephrine doses to <1 mcg/kg. AVOID: vasopressin, Ca channel blockers, Beta blockers, and local anesthetics
- Initiate early intralipid (IL) therapy
  - Bolus IL 20% 1.5 ml/kg, followed by infusion of 0.25 ml/kg/min
  - May repeat loading doses (max 3 total doses)
  - May increase infusion rate to 0.5 ml/kg/min if BP is still low. Not to exceed 10 ml/kg in the first 30 mins.
  - Consider early initiation of cardiopulmonary bypass

References


ASRA guidelines for management of local anesthetics toxicity. 2015.

Malignant Hyperthermia

Definition
- A hypermetabolic crisis that occurs when susceptible patients are exposed to a triggering anesthetic agent; underlying defect is abnormally increased Ca\(^{2+}\) levels in skeletal muscle resulting in sustained muscle contraction
- Increased ATP activity results in uncontrolled metabolism
- The hypermetabolic state increase O\(_2\) consumption, CO\(_2\) production. Causes severe lactic acidosis and hyperthermia

Genetics
- Genetic hypermetabolic muscle disease
- Can be autosomal dominant inheritance (RYR-1 receptor) with variable penetrance and expression, but autosomal recessive forms also described (especially that associated with King-Denborough syndrome)
- At least 6 chromosomal loci identified, but >80 genetic defects associated with MH
- Ryanodine receptor-1 (RYR-1), the skeletal muscle Ca\(^{2+}\) channel regulator, is best characterized

Basics, Continued

Incidence
- Rare, see in 1:15,000 pediatric vs. 1:40,000 adult patients
- Most cases reported in young males, almost no cases in infants, few elderly
- The upper Midwest has highest incidence in US
- MH may occur on a patient’s 2\(^{nd}\) exposure to triggers (nearly 50% of MH episodes had at least one uneventful exposure to an anesthetic prior)
- May occur late in the anesthetic, possibly even in PACU!
- Risk factors include personal/family history of MH, pediatric age, comorbid myopathies, caffeine intolerance, history of unexplained fevers/cramps/weakness, h/o exercise induced rhabdomyolysis, trismus on induction (precedes 15-30% of MH)

Excitation-Contraction Coupling

MH: Depolarization \(\rightarrow\) mutant RYR-1 receptor remains open \(\rightarrow\) unregulated calcium entry into cell from sarcoplasmic reticulum \(\rightarrow\) sustained contraction \(\rightarrow\) heat generation, CO\(_2\) production, and cell damage

Sequence of Events

(heralded by uncontrolled increase in intracellular calcium causing sustained muscle contraction, and thus hypermetabolism increasing O\(_2\) consumption and CO\(_2\) production)

1. Triggers
   - All halogenated inhalational agents (not N\(_2\)O)
   - Succinylcholine

2. Increased Cytoplasmic Free Ca\(^{2+}\)
   - Masseter muscle rigidity (trismus*)
   - Total body rigidity

3. Hypermetabolism
   - Increased CO\(_2\) production (most sensitive and specific sign of MH!)
   - Increased O\(_2\) consumption
   - Increased heat production

*not all patients with trismus will go on to have MH, and not all MH cases will be heralded by trismus

**Earliest recognized signs of MH= masseter muscle rigidity, tachycardia, and hypercarbia

Sequence of Events

4. Cell Damage
   - Leakage of K\(^+\), myoglobin, CK (may see dark-colored urine)

5. Compensatory Mechanisms
   - Increased catecholamines - tachycardia, hypertension, cutaneous vasoconstriction
   - Increased cardiac output - decreased S\(_{\text{vO2}}\), decreased P\(_2\)O\(_2\), metabolic acidosis
   - Increased ventilation - increased ET\(_{\text{CO2}}\), increased VE
   - Heat loss - sweating, cutaneous vasodilation

6. Temperature Rise
   - A late and inconsistent sign of MH!
   - Temperature can rise 1-2\(^{\circ}\)C every 5 minutes.
Sequence of Events

7. Secondary systemic manifestations

- Arrhythmias
- DIC
- Hemorrhage
- Cerebral Edema
- Acute Renal Failure
- Compartment Syndrome
- Death (due to DIC and organ failure as result of delayed administration of dantrolene)

***The signs & symptoms of MH are seen often in the OR and are non-specific***

It's important to be thinking of MH as missing it will have devastating consequences. Clinically, you may first see trismus, but often hypercarbia will be your first sign. Without another reasonable explanation for this (hyperventilation, pneumoperitoneum), you should start looking for other signs. Look at your monitors – is there increased oxygen consumption? Tachycardia? Hypertension? Arrhythmias? Hypothermia? Look at your patient – are they sweating? Rigid? Any combination of these findings should then make you want to rule out MH – consider an ABG (mixed metabolic and respiratory acidosis & hyperkalemia).

---

Differential Diagnosis

- Neuroleptic Malignant Syndrome (NMS) (in patients receiving antidopaminergic agents or in withdrawal from dopamine agents as in Parkinson’s, usually develops over days rather than minutes to hours)
- Thyroid Storm (would not see hyperkalemia or acidotic; usually see hypokalemia)
- Sepsis (fever, tachypnea, tachycardia, metabolic acidosis)
- Pheochromocytoma (HR, BP, but normal EtCO2 and Temp)
- Drug-induced (e.g. ecstasy, crack, amphetamines, PCP, LSD)
- Serotonin Syndrome (associated drugs interactions MAOIs + meperidine or MAOIs + SSRIs)
- Iatrogenic Hyperthermia
- Hypercarbia from CO2 insufflation for laparoscopy (see EtCO2 with tachycardia)

---

Treatment (Acute Phase)

1. Immediate reactions

- Call for help; get MH cart (contains ALL the drugs you need)
- D/C volatile agents and succinylcholine, switch to 100% O2 and increase fresh gas flows to >10 ml/min
  - If available, there are activated charcoal filters that help to scavenge the agent out of the circuit
- Notify surgeon; halt surgery ASAP, or continue with non-triggering agents (TIVA) if necessary.
- Call the MH Hotline 1-800-MH-HYPER.
- Check an ABG and place a foley catheter

---

Dantrolene

- A hydrophobic, hydantoin derivative with 12 hour t1/2
- Interferes with excitation-contraction coupling by binding the RYR-1 Ca2+ channel
- Relatively safe drug; causes generalized muscle weakness (including respiratory muscles). Can cause hepatic dysfunction long term, but none seen acutely
- Formulation contains mannitol (hope you placed a foley!)
- Can also be used to treat NMS or thyroid storm.

---

Treatment (Acute Phase)

2. Give Dantrolene, give more dantrolene (or the newer Ryanodex which is easier to mix)

- 2.5 mg/kg IV push q5 min until decreased EtCO2, decreased muscle rigidity, and/or decreased tachycardia
- Give through large bore IV or centrally (can cause phlebitis)
- Sometimes, more than 10 mg/kg is necessary (= 35 vials of dantrolene! – consider dedicating an assistant to this).
  - If no change after 10 mg/kg consider other diagnoses as well
- Dissolve 20 mg Dantrolene in 60 ml sterile, preservative-free H2O
- RYANODEX® – Each 250 mg vial should be reconstituted with 5 ml of sterile water for injection

---

Treatment (Acute Phase)

3. Treat acidosis

- Hyperventilate patient.
- Bicarbonate 1-2 mEq/kg if base excess greater than -8

4. Treat hyperthermia

- Cool if T > 39°C, but D/C if T < 38°C.
- Cooling blankets, apply ice to body surfaces; Cold NS via IV; Lavage stomach, bladder, or rectum PRN.

5. Treat hyperkalemia

- Hyperventilate
- Bicarbonate
- Insulin & glucose (10 units in 50 ml D50)
- Calcium (10 mg/kg CaCl2, or 10-50 mg/kg Ca gluconate.)
**Treatment (Acute Phase)**

6. Treat dysrhythmias
   - Standard therapies, but avoid CCBs in the presence of dantrolene (may promote hyperkalemia).
   - May need antiarrhythmic if persists despite correction of hyperkalemia and acidosis

7. Maintain UOP to >1 mg/kg/hr to prevent ARF. Place foley.
   - Lasix (0.5–1 mg/kg, max dose 20 mg) and/or Mannitol (0.25 g/kg) (dantrolene also contains mannitol)

8. Continue to monitor
   - 

**Treatment (Post Acute Phase)**

1. Observe in ICU for at least 24 hours.
   - Recrudescence rate is 25%.

2. Continue Dantrolene
   - 1 mg/kg IV q4-6hrs for at least 24 hours.

3. Follow labs (watch for DIC, renal failure)
   - ABGs, CK, myoglobinuria, coags, electrolytes, UOP and color

4. Counsel patient and family
   - Future precautions.
   - Refer to MHAUS.

5. Refer patient and family to nearest Biopsy Center for follow-up.

---

**Who is Susceptible to MH?**

- Since autosomal dominant inheritance pattern, all closely related family members considered susceptible in absence of testing
  - This is even if have had previous uneventful anesthetics

- Several rare musculoskeletal disorders linked to MH
  - Central Core Disease
  - King Dentborah Syndrome
  - Multiminicore myopathy

- Other disorders:
  - Muscular dystrophy and other neuromuscular diseases upon exposure to triggering agents have weak associations with MH-like events
  - Definitively avoid succinylcholine as can cause rhabdomyolysis, controversial whether to avoid volatile anesthetic; experts believe brief exposure should be small risk (i.e. inhalational induction in pediatric patients)
  - Should monitor capnography, minute ventilation, and core temperatures; experts suggest that there be means to check serum electrolytes and urine screen for myoglobin if patient is signs of neuromuscular disorder so can document that individual has not suffered complication from anesthetic
  - History of exertional heat stroke or exercise-induced rhabdomyolysis—some suggestion that these people may harbor genetic changes found in MH susceptible individuals

---

**Prevention in Susceptible Patients**

**Machine**
- Change circuit and CO2 absorbent
- Remove or disable vaporizers
- Flush machine at FGF of 10 L/min for ≥20 minutes and during case keep flows > 10L/min to avoid “rebound phenomenon” (see release of residual volatile anesthetic agent when FGF is reduced after a set period of flushing)

**Monitors**
- ASA monitors, especially temperature and ET\textsubscript{CO2}

**Anesthetic**
- Avoid succinylcholine and volatiles
- All other non-triggering agents are OK (including N\textsubscript{2}O)

**Emergency**
- Know where to find the MH cart
- Have dantrolene available

---

**Susceptibility Testing**

**Caffeine-Halothane Contracture Test (CHCT)**
- Gold Standard
- Takes fresh muscle biopsy and exposes to triggers
- Sensitivity >97%, Specificity 80-93% (rule-out)
- 10-20% false positive rate but zero false negative rate
- Available at 9 U.S. testing centers

**Molecular Genetics**
- \textit{RYR1} mutation screening
- Low sensitivity, but high specificity (rule-in)
- Only screens for 20% of recognized mutations
- Typically reserved for patients with a positive CHCT, relatives of known MH susceptibility, or patients with highly suspicious MH episode.

---

**References**

- Malignant Hyperthermia Association of the United States (MHAUS, [http://www.mhaus.org](http://www.mhaus.org))
- UCLA Department of Anesthesiology ([http://www.anes.ucla.edu/dept/mh.html](http://www.anes.ucla.edu/dept/mh.html))
Perioperative Antibiotics

Why Antibiotics?

Because in 1984 a study including 51 acute care hospitals in New York State found that surgical site infection (SSI) was the most common adverse surgical event (and the second most common adverse event overall).


Timing of prophylaxis

- Antibiotic therapy should be given within 60 min (ideally: 15-45 mins) prior to surgical incision for adequate serum drug tissue levels at incision.
- If a proximal tourniquet is used, the entire antibiotic dose should be administered before the tourniquet is inflated.
- Exceptions: Active ongoing antibiotic therapy (usually in-patients) or after a specimen is sent for culture.
- Epic tip: Click on “Patient Summary”, then the “Micro” tab. It will show you which antibiotics the patient is on and when they need to be redosed.

Administration and Common Dosages

- To be given via slow infusion (reconstitute in 100ml NS and give with microdripper)
  - Vancomycin (Red Man Syndrome) – over 30-60 mins
  - Gentamicin (ototoxicity/nephrotoxicity) – over 30-60 mins
  - Metronidazole (low pH) – over 60 mins
  - Cipro – over 30 mins
  - Clindamycin (QT prolongation) – over 10-15 mins
  - Ertapenem – over 30 mins
- Typical dosages for antibiotics commonly used in the OR (these are frequently requested dosages here at Stanford — however this may change given new published guidelines)
  - Cefazolin 2gm (3gm for patients > 80kg)
  - Cefotaxime 1.5gm
  - Clindamycin 800-900mg
  - Gentamicin 1.5mg/kg
  - Metronidazole 500mg
  - Zosyn 3.375gm
  - Ceftriaxone 2gm
  - Vancomycin 1gm for < 88kg; 1.25gm for 80-100; 1.5gm for 100-120; 2 gm for > 120
  - Cipro 400mg
- Adjust for renal insufficiency (except for Clindamycin and Ceftriaxone)
- Note: Ertapenem 1gm is favored by Drs. Shelton and Rhoades for their colorectal cases

These are the most up to date guidelines from the 2013 IDSA, ASHP, and SIS (Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect 2013;14:73-156.)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>ASHP</th>
<th>IDSA</th>
<th>SIS (Drs. Shelton &amp; Rhoades)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>1gm</td>
<td>1gm</td>
<td>1gm for &gt; 80kg</td>
</tr>
<tr>
<td>Cefazolin</td>
<td>2gm</td>
<td>2gm</td>
<td>2gm for &gt; 80kg</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>1.5gm</td>
<td>1.5gm</td>
<td>1.5gm for &gt; 80kg</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>600mg</td>
<td>600mg</td>
<td>600mg for &gt; 80kg</td>
</tr>
<tr>
<td>Cipro</td>
<td>400mg</td>
<td>400mg</td>
<td>400mg for &gt; 80kg</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>2.6mg/kg</td>
<td>2.6mg/kg</td>
<td>2.6mg/kg kg</td>
</tr>
</tbody>
</table>
These are the most up-to-date guidelines from the 2013 IDSA, ASHP, and SIS (Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect 2013;14:73–156.)

### Re-Dosing Guidelines

According to Stanford Pharmacy Guidelines

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Re-dosing Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefazolin</td>
<td>4 hours</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>3 hours</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>6 hours</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>8 hours</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>24 hours (n/a)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>n/a</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>n/a</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>12 hours* normal renal function</td>
</tr>
</tbody>
</table>

### Types of Procedures

- **Clean procedures (i.e. ortho, breast)**
  - 1st generation cephalosporin (Cefazolin/Ancef) covers staphylococci and streptococci
  - Procedures involving bowel anorebces, Gram neg- bacilli, enterococci
  - 2nd generation cephalosporin (Cefoxitin or Cefotetan)
  - Bowel aerobic gram-neg bacilli (i.e. E. coli) can be resistant, so consider adding metronidazole.
- **Craniotomies**
  - 3rd generation cephalosporin for good CSF penetration (i.e. Ceftriaxone)
- ** Procedures involving groin incisions (i.e. vascular surgery, hysterectomy, colorectal surgery)**
  - Consider adding gentamicin, ciprofloxacin, levofloxacin, or aztreonam to cover gram-neg bacteria.

### Allergies and Interactions

- Penicillins and cephalosporins have similar β-lactam ring
- True incidence of allergy in patients with a history of PCN allergy is less than 10%. Only IgE-mediated reaction (type I, immediate hypersensitivity reactions) are true allergic reactions.
- The cross-reaction rate between PCN and cephalosporins is substantially less than 10%
- History of PCN allergy is a general risk factor for allergic manifestations to antibiotic administration that may not be specific to cephalosporins
- Cross-reaction rate between 3rd generation cephalosporins and PCN approaches 0%
- For PCN-allergic patients, consider vancomycin or Clindamycin ± one of the following for Gram neg coverage (ciprofloxacin, levofloxacin, gentamicin, or aztreonam)

- If the allergic reaction to PCN is only “rash” or “hives,” many attendings would give a cephalosporin, but always ask your specific attending!
- However, hx of anaphylactic reaction to PCN is an absolute contraindication to cephalosporins.
- **Test dose**: Not always done. However, it may be prudent to give 1ml of the antibiotic first to see if the patient will have a reaction. This test dose only decreases the anaphylactoid reaction, not anaphylaxis.
- Allergic reactions are more likely from neuromuscular blockers than antibiotics.

### Special considerations

- The American Heart Association guidelines recommend prophylaxis for those with conditions that place them at increased risk for infective endocarditis AND for those at highest risk for adverse outcomes when endocarditis does occur. These are patients with:
  - Prosthetic cardiac valve
  - Previous history of infective endocarditis
  - Congenital heart disease and completely repaired congenital heart defect if it’s within the first 6 months.
  - Cardiac transplant patients who develop cardiac valvulopathy
- Bacterial Endocarditis prophylaxis
  - Ampicillin 1-2gm IV, 30min prior to surgery and
  - Gentamicin 1.5mg/kg IV, 30min prior to surgery
  - IF PCN allergic, use Cefazolin or ceftriaxone 1gm IV, or Clindamycin 600mg IV
- For mitral valve prolapse, do not need prophylaxis because, while there is increased risk for IE, the most serious adverse outcomes of IE do not usually occur in patients with this condition.
- Do not need prophylaxis for bronchoscopy without biopsy, vaginal delivery, hysterectomy, or GI/GU procedures, including colonoscopy.

Hall Question

Each of the following drugs can enhance the neuromuscular blockade produced by nondepolarizing muscle relaxants EXCEPT

A. Calcium  
B. Aminoglycoside antibiotics  
C. Magnesium  
D. Dantrolene  
E. Intravenous lidocaine

- See next slide for answer.

Hall Answer

- (A) Many drugs can enhance the neuromuscular block produced by nondepolarizing muscle relaxants. These include volatile anesthetics, aminoglycoside antibiotics, magnesium, intravenous local anesthetics, furosemide, dantrolene, calcium channel blockers, and lithium. Calcium does not enhance neuromuscular blockade and, in fact, actually antagonizes the effects of magnesium. In patients with hyperparathyroidism and hypercalcemia there is a decreased sensitivity to nondepolarizing muscle relaxants and shorter durations of action (Miller: Anesthesia, ed 6, pp 514-518, Stoelting: Pharmacology and Physiology in Anesthetic Practice, ed 4, pp 224-226, 395).

References


I met my next patient in the VA preop area. I did my physical exam and was ready to place the IV. I had the lidocaine needle at his skin and announced, "Small prick!" He responded, "Honey, that's what my ex-wife used to tell me, too."

It was time to bring the patient to the OR, and I was pushing him on a gurney down the ASC hallway. I got lost along the way and took a wrong turn leading to a dead end. I tried to play it off that we had taken this round about way just to get a patient hat for the OR. Unfortunately, despite the Versed, I think he saw right through the subterfuge.

Wheeled the patient into the room for a hip fracture repair. Nurse on the computer. Myself, anesthesia attending and ortho resident move the patient to the OR bed at which point the pt chuckles and smiles. I ask "what's so funny?" He responds, "I just had about a million dollars worth of education move me from one bed to another."
I anesthetized a trauma patient with multiple fractures. We did his hip while he was still intubated and I gave him a fair amount of ketamine for multimodal analgesia. The surgeons told me that when they rounded on him after he was extubated, the patient said, “Thanks for fixing my hip, but what are you going to do about my hind legs?” The patient then proceeded to explain that his hind legs needed to be fixed because he was a “centaur.” When I did his ankle fracture a few days later he told me that, “The last time I had anesthesia, I had a ‘bad trip.’”
Topics for Discussion

1. Your IV infiltrates during induction. What are your options?
2. You get stuck with a needle. How do you protect yourself and the patient?
3. You can’t deliver positive pressure. What are your next steps?
4. You witness an unprofessional exchange between a surgeon and a nurse/med student/resident/etc. Who should you talk to?
5. You encounter an unanticipated difficult airway. You know you’re supposed to CALL FOR HELP. Who do you call and what do you ask for?
6. You inadvertently administer the wrong medication. What should you do and who should you tell?
7. Your patient tells you that he wants only the attending to perform invasive procedures. How do you respond?
8. The surgeon insists that the patient is not relaxed enough, even though you just redosed a NDMB 5 minutes ago. What are your options?
9. You administer antibiotics after induction. An hour later, incision has still not been made. What should you do?
10. The surgeon appears to be struggling and the patient is rapidly losing blood. The surgeon insists that he does not need help. What should you do?
Fun Facts

• Dr. Sean Mackey, chief resident in 1997, submitted the *Stanford Anesthesia Lounge Proposal* which was the genesis of our modern-day break room. While researching his proposal, he used a stopwatch to time his walk from the OR to the old medical records lounge (that served coffee and danishes). In addition to sparing us from using more than 1/3 of our break time commuting, this proposal was developed to foster a sense of community amongst the department and serve as a place for informal teaching. According to Carolyn Rebello, we go through roughly 26 boxes of Peets coffee per week (almost $1300 worth of beans)! Dr. Mackey was also involved in organizing the first residency-wide ski trip to Tahoe. So next time you’re enjoying your nutella-slathered bagel and 3rd cup of coffee of the morning, take a moment to thank Drs. Mackey and Pearl for continuing this awesome tradition.

• According to Dr. JBU, the annual Stanford Anesthesia Golf Tournament kicked off in 2002. Since that time, Stanford Anesthesia alum Dr. Scott Rudy has won the most titles.

• Who are you most likely to see at the stadium this fall decked out in Cardinal red and cheering wildly? Drs. Rosenthal and Mihm

• According to Dr. Rosenthal, our department was only 30 members (including the VA and SCVMC) back in 1975 when he joined Stanford!